• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

I intend to study a circuit, in which I will determine the electro motive force (emf) and total internal resistance (tir) of a power supply.

Extracts from this document...

Introduction

Hannah Proctor 3PAW

Practical assessment – Power supply.

Aim:

        I intend to study a circuit, in which I will determine the electro motive force (emf) and total internal resistance (tir) of a power supply.

Diagram:

        E = emf, r = tir, R = potentiometer, V = voltmeter, A = ammeter.

Results of preliminary trials:

        I did some preliminary testing to determine the range over which the variables will change, here are the results…

V / volts

I / amps

1.180

10.00

1.350

9.00

1.490

8.00

1.660

7.00

1.820

6.00

… From my preliminary tests I found that a decrease of 1A results in an increase of 0.16V on average. Thus I have decided that a decrease of 0.5A for each reading should give me enough information to calculate the emf and tir if I were to take seven readings.

Method:

        I will set up my equipment as shown and as I vary the current on the potentiometer, and read the voltage from the digital voltmeter (accurate to 100th of a volt) I have chosen to use this degree of accuracy because my preliminary tests show accuracy to 2 decimal place will be most appropriate. I will vary A in steps of 0.5A and thus I will start at 10A, 9.5A, 9A etc until 7A

...read more.

Middle

        To ensure the utmost safety while conducting my experiments I will not run excessive energy through the circuit, I will try not to let other students or teachers near my circuit to make sure it is entirely my responsibility. Also I won’t be passing enough volts or amps to short out the classroom or electrocute myself.

Proposed Analysis:

        My research has told me that the graph I will plot using my results will show indirect proportionality between the voltage and the current.

Observations:

        Here are the results obtained from my experiment together with the mean average.

Current / A

1. Voltage / V

2. Voltage / V

3. Voltage / V

Average / V

0.060

1.840

1.840

1.840

1.840

0.070

1.690

1.690

1.680

1.690

0.080

1.540

1.540

1.530

1.540

0.090

1.380

1.370

1.360

1.370

0.100

1.210

1.220

1.220

1.220

0.110

1.140

1.120

1.100

1.120

...read more.

Conclusion

th of a volt. Because of this the actual result may have been rounded up or down which again may have affected the set of results I obtained.

        I have mentioned that I took the mean of three results, for example for 0.9A I got the following results 1.38V, 1.37V, and 1.36V. These average out at 1.37V. I took the mean of a set of results because if I only took one reading I may gather some very un-reliable information and thus be misled as to the actual answer.

I drew two extra lines on my graph they indicate the line of most squares and that of the least squares; these show the uncertainty in my results. It shows almost 0.5V worth of error.

Conclusion:

        In conclusion to this I can say that the Total Internal Resistance is 15.625Ω. The Electro Motive Force is 2.65V. The maximum power that could be derived is 0.11W.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. In this experiment, we will measure the e.m.f. and the internal resistance of a ...

    Therefore, we should not leave the circuit connected longer than necessary to take the readings. In addition, we should ensure the ammeter and voltmeter are connected to the cell with suitable way (positive terminal to the direction of positive terminal and negative terminal to the direction of negative terminal).

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    I expect the internal resistance to be halved in the parallel circuit, because in series circuit the internal resistance is r = r1 + r2. However in parallel, the internal resistance is: 1/r = 1/r1 + 1/r2 = r = r1 + r2/ 2 Diag parallel with two cells: Prediction

  1. The aim of my investigation is to determine the specific heat capacity of aluminium.

    I was unable to use a more accurate thermometer, as these were the best in school. Thermometer, %error = 0.5 x 100 20 = 3% This is a slightly larger source of error and along with human error of measurement could result or is used to explain any inaccurate results.

  2. Design and Carry Out an experiment to determine the EMF and Internal Resistance of ...

    Internal resistance is resistance that is found only in the power source. Commonly written as r and graphically represented by a resistor enclosed in a circle surrounding both the resistor and the power source. It is possible to work out the current that flows when a power source is connected to an external resistor, R.

  1. Investigating how temperature affects the resistance in a wire

    By projecting my line of best fit till it reaches the x-axis or y = 0 (see graph 6) I can calculate from the results that at -260?C there would be no resistance or in other words the object would become a superconductor.

  2. The potato - a source of EMF

    most of the acid and so the EMF produced by the potato will decrease. In the data I have been given there is a column for the Load Resistance (k?). This was recorded by an ohmmeter checking the exact resistance of the variable resistor.

  1. Find The Internal Resistance Of A Power Supply

    From Kirchhoff's second law we know that: E = IR + Ir (1) Where E is the Electromotive Force (EMF) of the power supply, maximum energy per unit charge that the power supply can deliver. R is the external (load) resistance. And I is the current flowing through the circuit.

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    From the formula, we can know that the magnitude of the kinetic friction is direct proportional to the normal reaction force as the coefficient of kinetic friction is constant. The factors that can affect the kinetic friction are same as that of the static friction.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work