• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

I predict that the juice will have at least 2 or more of the same amino acids as the ones in the amino acid mix. I predict that the amino acid more likely to occur is aspartic acid, as lemon juice is acidic.

Extracts from this document...

Introduction

CHROMATOGRAPHY Hypothesis I predict that the juice will have at least 2 or more of the same amino acids as the ones in the amino acid mix. I predict that the amino acid more likely to occur is aspartic acid, as lemon juice is acidic. Method * We first extract some lemon juice from a lemon. Cut the lemon around the equator and squeeze it with a juicer. * Pour the juice into six tubes at approximately the same level each. * Place the tubes in a beaker and weigh them (remembering to tare the beaker first). Make pairs of tubes of equal mass by adding or taking out juice with a clean pipette) and place them opposite each other in the centrifuge and set it to run for 5 minutes. * After centrifuging the juice, pour all the supernatant into a beaker and wash out the solid precipitate from the tubes. * Take 2 samples of the raw centrifuged juice in tubes, label and put them away. * Add alcohol to the remaining juice with the ratio of 1:3 (1unit of juice to 3 units of alcohol). ...read more.

Middle

1st aa: x = 9/154 = 0.058 y = 15/154 = 0.097 z = 1/154 = 0.0065 2nd aa: x = 34/154 = 0.22 y = 43.5/154 = 0.28 z = 21/154 = 0.14 Amino Acid Mix 1st aa: x = 33/154 = 0.21 y = 44.5/154 = 0.29 z = 15.5/154 = 0.10 2nd aa: x = 54.5/154 = 0.39 y = 73/154 = 0.47 z = 48.5/154 = 0.31 3rd aa: x = 80/154 = 0.52 y = 85.5/154 = 0.56 z = 74/154 = 0.48 4th aa: x = 104/154 = 0.68 y = 117.5/154 = 0.76 z = 90/154 = 0.58 Asp. x = 35/154 = 0.23 y = 45.5/154 = 0.30 z = 17/154 = 0.11 Leu. x = 77/154 = 0.50 y = 114/154 = 0.74 z = 60.5/154 = 0.39 Lys. x = 52.5/154 = 0.34 y = 72/154 = 0.47 z = 45/154 = 0.29 Pro. x = 75/154 = 0.49 y = 90/154 = 0.58 z = 64.5/154 = 0.42 Percentage Variation (PV) Juice 1st aa: 20-10/10*100 = 100% 0-10/10*100 = -100% PV = 0.065 +- 100% 2nd aa: 46-33.5/33.5*100 = 37.3% 28-33.5/33.5*100 = -16.4% PV = 0.22 + 37.3% or 0.22 - 16.4% Juice + ...read more.

Conclusion

I had marked what I thought was the darkest region of the spot with an 'x.' However that mark was aligned with the mark for Pro and so indicating that they are the same amino acid. This is impossible, but may have been caused by either: Misinterpreting the darkest region of the spot (marking the wrong place) Accidentally using the same micropipette for two substances It would make more sense if the mark on the spot for Leu was closer to the top of the spot, where it would be aligned to one of the spots in the amino acid mix. The 1st amino acid spot for the juice had a smaller spot within it. The smaller spot even showed up as a different color to that of the larger spot, so it must be just another amino acid, not present in the amino acid mix. I could have improved this experiment by making sure that I do not add too much of a substance onto the chromatogram, by getting a second opinion on whether I had marked the darkest region of a spot or not and/or by using a wider variety of amino acids to identify the other amino acids in the juice which do not align with any others. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Marked by a teacher

    Stereochemistry of Butenedioic acid

    5 star(s)

    Maleic acid (cis-butendioic acid) Fumaric Acid (trans-butendioic acid) Generally, they have similar but not identical chemical properties and very different physical properties, e.g. melting point, solubility, density and stability. Maleic acid is highly toxic; it reacts with thiol groups on proteins in human body and thereby renders the proteins unable to react in their normal way.

  2. Marked by a teacher

    Finding out how much acid there is in a solution

    Once there is excess acid, there is a huge drop. This is due to reaching the point of equivalence. Weak Acid and Weak Base: e.g. A common example of a weak acid and weak base is ethanoic acid and ammonia.

  1. Analysis of amino acids by paper chromatography

    This is done using a capillary tube. Try to keep the spots as small as possible. You may want to practice the spotting of a solution on paper. Practice with water and a paper towel (or a piece of filter paper). Do not waste the chromatographic paper for practicing.

  2. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    Stopper the flask, label it and invert it ten times to ensure the concentration is the same in the whole solution 2.4 - Method for Varying the Concentration of a Reactantxi This is the general method that I will use to obtain results when varying the concentration of the potassium bromide solution, the potassium bromate solution or the sulphuric acid.

  1. Identification of amino acids by using paper chromatography

    Although Aspartic Acid is considered a non-essential amino acid, it plays a paramount role in metabolism during construction of other amino acids and biochemical in the citric acid cycle. Leucine One of three branched-chain amino acids that enhance energy, increase endurance, and aid in muscle tissue recovery and repair.

  2. An Investigation using Chromatography to determine the different Amino Acids

    I put the solvent into the Gas Jar it was just submerged into the solvent. So as I just mentioned I then put the solvent into the bottom of the Gas Jar, so that it could rise up the chromatography paper, put then lid on so that the vapours from

  1. Identification of amino acids by chromatography.

    The chromatogram should then set up. The solvent at the bottom of the chromatogram should be made up of: 1 part water, 1 part glacial acetic acid and 4 parts butanol. Leave the paper in the chromatogram for 4 hours (or until the solvent has capillaried up to 5mm from the paperclip).

  2. Outline and examine some uses of different metals through history, including contemporary uses, as ...

    Our future use of metals is limited by the finite amounts of accessible natural minerals. 1. Describe the separation processes, chemical reactions and energy considerations involved in the extraction of copper from one of its ores. The extraction of copper includes, mining and crushing, froth flotation, roasting and smelting and electrolytic refining.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work