• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

In this experiment, we will measure the e.m.f. and the internal resistance of a dry cell.

Extracts from this document...


Experiment 2A: Centre of gravity of a body(irregular shape only)


     To determine the center of gravity of a body of different shapes

Experimental Design


Name of apparatus



Dry cell


1.5 V

d.c. Voltmeter (0-5 V)


Product code: 83040152

d.c. Ammeter (0 –1 A)




A plug key



Enhance the result more significantly

Connecting wire


Electronic Diagram


Description of design:

    In this experiment, we will measure the e.m.f. and the internal resistance of a dry cell. In order to investigate the objective of the experiment, we should connect the apparatus as the above electric diagram. The voltmeter should be connected in parallel circuit while the ammeter should be connected in series circuit, otherwise, it may cause the inaccurate reading of the meters. Besides, we investigate the terminal potential difference V varies with the current I, hence we find out the internal resistance and the e.m.f by plotting the voltage – current graph. By vary the resistance of the rheostat R, the current I also varies. The terminal potential difference V across the dry cell is given by V = image01.png – Ir.


     Electromotive Force (e.m.f) of a dry cell is the amount of electrical potential energy gained by a coulomb of charge which passes through the dry cell. Simply, A Voltage where the charge is gaining energy is an electromotive force.

...read more.


Secondly, the rheostat should be set to its maximum value in the beginning of the experiment, so that the current is the lowest at first, then increase gradually. As high current produces heat, it would increase the resistance of the connecting wires and the internal resistance. The current through the wire will heat up the wire and lead to increase resistance of the apparatus. It may lead to the inaccurate and imprecise data obtained and hence the inaccurate calculated value of the e.m.f and internal resistance in the dry cell. Therefore, we should not leave the circuit connected longer than necessary to take the readings.

In addition, we should ensure the ammeter and voltmeter are connected to the cell with suitable way (positive terminal to the direction of positive terminal and negative terminal to the direction of negative terminal). Hence the ways of connection of ammeter and voltmeter also should be in correct ways (voltmeter in parallel while ammeter in series). Otherwise, the pointer will deflect to the opposite direction. The ammeter and voltmeter may be damaged.

Results & Calculations

    The values of e.m.f and the internal resistance of the dry cell used in the experiment are calculated in both mathematical and graphical method:

For mathematical method,

Two dry cells are used:

V/V± 0.10










I/A± 0.01











...read more.



     By both mathematical and graphical methods, we can find out the e.m.f and the internal resistance of one dry cell.

     For mathematical method, the e.m.f and internal resistance of the cell are 1.3 V ± 0.1 V and 0.95 Ω ± 0.87 Ω. respectively. For graphical method, the e.m.f and internal resistance of the cell are 1.29 V ± 0.04 V and 0.7 Ω ± 0.3 Ω respectively. Either the e.m.f from the mathematical method or the one from the graphical method are not equal to the value stated on the experiment menu, 1.5V. It may result from the consumption of chemical energy in the dry cell as the dry cell may be used for a period of time. In addition, they are closed to each other; it means that the results calculated are precise.

       However, internal resistances calculated from both methods are not closed to each other and there are many experimental errors in the experiment. To obtain a more accurate and precise result, we should have more preparations and minimize the experimental errors as much as possible. For further investigation, we can find out the effect of heating on the internal resistance of the apparatus especially the dry cell.


Wikipedia (internal resistance)


New Way Physics for advanced level Fields, Electricity and Electromagnetism P.125 – 126 for better understanding of internal resistance.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Marked by a teacher

    Internal Resistance of a cell

    5 star(s)

    In poor conductors the resistance is high; therefore a very large voltage is needed to cause a current of 1A. Until now we have ignored the fact that when there is a current in a circuit, charges also flow through batteries or power supply producing it.

  2. Peer reviewed

    To determine the internal resistance of a dry cell using an ammeter and a ...

    3 star(s)

    However ,it is sometimes useful to know its rough value .The internal resistance of a cell can be estimated as: Procedure : 1. The circuit was connected as shown below. 2. With the switch S open ,the e.m.f. of the cell was measured by using the voltmeter.

  1. Investigating the Emf and the internal resistance of a dry cell.

    I can substitute these values into the formula: r =0.6 1.2 internal resistance =0.5 As there is an uncertainty with the accuracy of these results I will also use the maximum line of best fit (red line) and minimum line of best fit (blue line)

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    Lost volts The greater the current delivered by the power supply, the lower its terminal potential difference. If more components are connected in parallel to the power supply, the current increases and the lost volts are given by: Lost volts = current * internal resistance Aim: The aim of this investigation can be derived from the title.

  1. Investigate methods of finding and comparing the e.m.f and internal resistance of different cells ...

    The power supply used was supposed to give voltages less than 2V. Instead it gave values within the 3V-4V ranges. Either a fixed voltage power supply, or the supply set to about 2V (through the use of an external resistor)

  2. Measuring the e.m.f. And Internal Resistance of a Cell

    = -0.47�0.02 Since V = -r I + ? and for a straight-line graph y = m x + C. The negative gradient must be the internal resistance. * If m = -0.47�0.03 Therefore Internal Resistance of the cell = 0.47�0.02? Calculating e.m.f. Using the Graph According to Kirchhoff's second law: "The algebraic sum of potential differences around a

  1. The aim of the experiment is to verify the maximum power theorem and investigate ...

    Moreover, the sand paper may make the wooden surface become smoother, and hence the static and kinetic friction may be different from the original one. So the numbers of pulling process should be minimized. On top of the above precautions, the spring balance is not connected to the wooden block firmly; it may be disconnected during the pulling process.

  2. The purpose of this experiment was to measure the specific heat capacity (Cb) of ...

    6. the calorimeter was weighed. Results:- MASS (kg) TEMPERATURE (�C) Copper 0.05059 �0.00005 ? 1 27�0.5 Water 0.102971 �0.0005 ?2 17�0.5 calorimeter,water and Ice 0.16392 �0.00005 Ice 0.01036 �0.00005 Analysis: Qloss= Qgain Qwater+Qcalorimeter = Qice + Qice water Mwcw?

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work