• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

In this investigation, I will be looking at the resistance of a solution, and the different things which affect it. In this experiment, I have chosen one variable, the salt concentration.

Extracts from this document...

Introduction

Investigating the resistance of a solution

In this investigation, I will be looking at the resistance of a solution, and the different things which affect it. In this experiment, I have chosen one variable, the salt concentration. I have chosen the following variables for the concentration: in a beaker of 50ml (cm ) :        0 grams, 1,2,3,4 and 5 grams. Using the circuit shown below, I will find out the resistance of the salt solution. I will keep the following variables the same: I will keep the temperature at room temperature, by not changing the room temperature at all, by keeping windows shut, and not adjusting the radiators during the experiment. I will monitor the temperature, and make a note, just incase it changes. I will monitor the temperature using a thermometer, which will be placed into the beaker during each experiment. I will keep the voltage at 5V and 50cm  of solution, to keep it a fair test. The circuit will include a power pack, an ammeter, a voltmeter, two iron rods, a beaker, wires with crocodile clips and a measuring tube. I will repeat each experient once, so that I can find out an average, which will prevent anomolies affecting the graph, and incase there is a difference between the first attempt, and the second attempt, I will be able to spot the mistakes.

Method

...read more.

Middle

Current

Input Voltage

Resistance

0

3.86

0.00

5

386.00

3

4.15

0.41

5

10.12

5

4.10

0.58

5

7.06

This preliminary experiment showed me that I might have to use a higher voltage, because there would be a wider range of voltage readings, and this would make a graph more easy to read and understand. I believe that 7V would be a better input voltage to have, because it is not too high, and it is not to small, as it is a higher voltage used in my preliminary work.

        It shows me that 50cm  is enough water to use, because it will dissolve the amount of acid I plan to use, 5g of salt. It is important that it can dissolve into the solution, because when it comes to the point when no more salt can be dissolved into the solution, it affects the results, because adding more salt has no effect on the reisistance anymore.

Apparatus

Apparatus

Use for apparatus

Power pack

To supply the power

Wires

To connect the circuit

Voltmeter

To measure the voltage

Ammeter

To measure the current

Beacker

...read more.

Conclusion

I would set up the circuit, as shown in my plan. Before putting the solution in a beaker, into the circuit, and placing the rods into the solution, I will heat the beaker on a tripod over a bunsen, with a thermometer in the beaker. When the temperature inside the beaker has reached the required temperature for the experiment, I will remove it from the tripod, connect the circuit, and record results. I will then rince out the beaker, and repeat the experiment again to a different temperature each time, with different temperatures.

This would show whether temperature affects the rate or not, because in my experiment, the temperature remained constant.

        I could use different waters for my experiment. I used distilled water, as to not affect the results. If I was to use tapwater, I could monitor whether the particles within the tapwater affected the results or not, and whether they conduct electricity, and decrease the resistance.

        I believe that the experiment would be improved, if different solutions were formed, for example, using a different material to salt, to see if this would produce the same results in terms of results.

        I used a D.C supply, this was because I wanted to keep the particles at the same charge throughout the experiment, I could improve the experiment, by using an A.C current, to see if this affected the resistance.

        I could use a larger amount of water,because this would enable me to dissolve more salt into the solution, and therefore give a wider spread of results.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Find The Internal Resistance Of A Power Supply

    y-axis at the EMF of the power supply to the point along the line of best fit which gives me the minimum gradient. To see whether the errors in the internal resistance of the power supply were significant, I have plotted the maximum and minimum gradients on all my results graphs.

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    This is due to the internal resistor being in parallel with each other, which results in the total internal resistance being half of the total internal resistance of a series circuit with two cells, which also halves the current and therefore means the e.m.f is also halved.

  1. Internal resistance investigation - I will conduct the following investigation with the aim to ...

    However, like any battery, this has a limited life. The electrodes undergo chemical reactions that block the flow of electricity.

  2. Single Phase Transformer (Experiment) Report.

    Areas of Application of Transformers. The control of transformer ratio under load is a desirable means of regulating the voltage of high-voltage feeders and of primary networks. It may be used for the control of the bus voltage in large distributing substations. It finds a wide field of application in controlling the ratio on step-up

  1. The aim of my investigation is to determine the specific heat capacity of aluminium.

    The nearer the thermometer is to the centre of the block the faster the heat will be transferred, and the greater the change in temperature readings. This will mean that the overall result for the specific heat capacity will be less. This may make my results nearer the book values.

  2. To find which of the circuits, shown below, are most suitable to measure a ...

    Safety I need to ensure that my experiment is conducted in the safest way possible, if not it could endanger lives, as well as damage equipment. My main concern is the Power Pack overheating or passing too large a current.

  1. Investigating how temperature affects the resistance in a wire

    due to the possibility of inaccuracy in the multi-meters that were used to take volt and amp readings. To represent this opening for inaccuracy I have used y-axis error bars on the results with an error amount of 2.4 either side of the values.

  2. How does changing the distance from a light source affect the power output of ...

    Results In column 4, I have converted the current from column 3 from mA to A by dividing it by 1000. This is just to make it easier to calculate the Power output. Distance from Bulb / cm �0.1cm Potential Difference / V �0.02V Current / mA � 2mA Current

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work