• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate free-falling objects and projectile motions.

Extracts from this document...


Experiments to investigate free-falling objects and projectile motions

By Sinthiya Punnialingam


The aim of my experiment is to obtain results/ data and see whether a pattern can be distinguished or whether my data agrees with a theory or law. I’m going to try to undergo two investigations using the same apparatus, and look at the outcome of my results and see whether a firm conclusion can be made.

For the two investigations, I’m going to look at free-falling objects and projectile motions:

Investigation 1:

Isaac Newton firstly discovered gravity when an apple fell on his head. He then discovered that every object has a mass and that two masses attract each other. This attraction has a gravitational field strength, Newton wanted to calculate the gravitational field strength of the earth. Newton discovered that when a force is

...read more.


Using the idea of vectors, velocity, force, acceleration has a vertical and a horizontal component in order for the object to have a direction. In this case, the car goes down the slope because a force is working on it. The force down the slope, has a vertical component and a horizontal component. On all objects, a gravitional force is pulling objects down , therefore any object has a weight:

Gravitaional force: weight: mass * gravity

To find the components we could attach the horizontal and vertical vectors on to ‘mg’, which forms a right-angle triangle. Unfortunately we can’t use pythagorus theorem because we don’t know the size of each component, even though I know that the mass of the car is o.o655kg, I want to see if I could produce a calculation which will apply

...read more.


ass="c2">F= mg * sin 0

                                                               ma = mg * sin 0    (take mass from both sides0

a=g*sin0 (sin 0 would be a constant)

Therefore, knowing that the angle of eleveation  is 7.6:

Acceleration = 9.8 8 sin 7.6

= 1.30 m/s/s

Therefore if the rule of free-falling object was applied to this experiment, acceleration must be 1.30 m/s/s. To see if it does, I’m going to attach a ticker tape to the car and let it go at that angle of elevation, and see whether I get this result.image03.pngimage04.png

On a ticker tape, the time to make two dots in 1/50 second, so I’m going to measure the distance between 10 dots, so I’m measuring the displacement every 0.5 s:Using this graph, I can find velocity by finding the gradient of this graph line:

Velocity= displacement/ time = horizontal/vertical =

To find acceleration, we have to find the change in velocity/ time taken, to do this, I could plot a velocity-time graph:image05.png

To find acceleration, I need to find the gradient of this graph line.image06.png

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Mechanics & Radioactivity essays

  1. Peer reviewed

    Aim:To find out whether or not the angle of the ramp affects the acceleration ...

    3 star(s)

    is the same. Analysis/Calculations 1. First cut the used ticker tape/mark it into 11 dot sections. Marking is recommended to cutting to prevent loss of sections. Remember that each of these sections would equal 0.2 seconds. 2. Now measure the first 11 dot sections with the measuring tape and note down the measurement.

  2. Peer reviewed

    Sir Isaac Newton.

    3 star(s)

    his aim to humiliate Hooke in public because of his opinions was abnormal. However, perhaps because of Newton's already high reputation, his corpuscular theory reigned until the wave theory was revived in the 19th century. Newton's greatest achievement was his work in physics and celestial mechanics, which culminated in the theory of universal gravitation.

  1. Determination of the acceleration due to gravity (g) by free fall.

    Since there are only two variables (h and t) measured in this experiment, all of the error in the determination of g comes from the error in the measurements of h and t. The errors in the measurements of h and t depend on the equipment used.

  2. Objectives: To determine the center of gravity of a body of irregular shapes

    Finally, there must be the effect of air resistance on the motion of the bob. The air resistance will oppose the motion of the bob and increase the time for one period. It results in the inaccurate data obtained and the final result of the gravitational acceleration calculated.

  1. Investigating the factors affecting tensile strength of human hair.

    Blonde hair required much less force to break compared to the other colours of hair. This proves that the disulphide bonds in the blonde hair are not a big advantage for strength of the hair. The darker the hair the stronger the force required for the bonds in the hair to break.

  2. Physic lab report - study the simple harmonic motion (SHM) of a simple pendulum ...

    Use the MVA software to record the positions and times for 2 complete oscillations of the mass. Save the project and export the data to a text file. 5. Use Microsoft Excel to open the exported files and plot the graphs for displacement, velocity and acceleration against time respectively.

  1. Experiment to find the acceleration due to gravity using free fall.

    The Earth is surrounded by a gravitational field which exerts a force on any mass in it. In terms of this experiment the ball is attracted towards the earth as it falls. I read that experiments done in the past have shown that at a particular place all bodies falling

  2. In this report I will start by exploring the history of the Computerised Tomography ...

    The potential difference generated needs to be high; high potential difference has a number of advantages in CT scanners. High potential difference reduces bone attenuation (greater penetration) allowing wider range of image (larger grey scale as bone is not merely white as on normal x-ray- (this will be explained later).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work