• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6

Investigate Hooke's law, using masses and springs.

Extracts from this document...

Introduction

Aim My aim is to investigate Hooke's law, using masses and springs. Background knowledge When weights are attached to one end of a spring it stretches. Hooke's law states that the extension depends directly on the load, that is: Extension (E) is proportional to the load (M) added. So if this is true doubling the load should double the extension. I know the limit of proportionality is when the spring becomes less stiff and the same force causes a greater stretch than below the limit of proportionality. If you carry on exerting a force on the spring then it looses its elasticity and will not return to its original shape. Prediction As the extension is proportional to the force (load) I think the spring will obey Hooke's law until the limit of proportionality. Plan I think the best way to display my results are in a graph because then you can see exactly how the spring obeys Hooke's law, you then also see where it reaches it's limit of proportionality. ...read more.

Middle

Here are some ways to make it safer: * You could wear goggles when placing more weights onto the mass holder. * Place the weights on at arms length. * Place the weights on the mass holder gently do not drop them on it. * Make sure the large weight holding the clamp on the table is secure and will not fall off. * When placing weights on the mass holder don't let anyone stand in a 2m radius of the experiment. * When the spring looks like it will break abort the experiment. Fair test Ways of making it a fair test are: * Trying to get springs that are the same strength. * Always using the same weight intervals. (100g) * Always try and read the ruler from the same point. * I will do the experiment 4 times because you then have a smaller chance of having errors and if you have a bad reading you can compare it with the rest. * To make it a fair test whenever I start the experiment I will always finish it, and if for some reason I can't, when I come back to it I will start it again. ...read more.

Conclusion

- Biggest = 3.72 - 3.95 = -0.23 - = Average ext. - Smallest = 3.72 - 3.375 = 0.35 From this I can see my largest error to be only 0.35cm. I can extend this to say my experimental error is +/- 0.35cm per 100g extension. Because this figure is small it shows I have executed the experiment reliably. Evaluation The results that are in red I have ignored because they do not follow my pattern and are anomalous results. A reason for them being like this could be due to the error of parallax. This is shown below: If I were to repeat the experiment I would try to minimise the magnitude of errors by using a more accurate method of measuring the extension. At the moment I am just using a ball of plastercine and a paper clip, there are many ways of decreasing the margin of error for example using lasers but this is prohibitively expensive and add an added danger. For the amount of reduction in error this would be pointless as there is always going to be a slight error. Conclusion I have found that the extension is proportional to the load and therefore I have satisfied my original prediction. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

Related AS and A Level Waves & Cosmology essays

1. Hooke's Law.

Another measure I am taking is that I shall not be the only one to take readings from the metre rule; I shall have two other peers who will also be reading off the same metre rule. From these 3 readings I shall draw up averages of level of weight applied to the spring.

2. Investigation on how putting springs in series and parallel affects their extension.

Evaluating Overall, I think the way in which I conducted my experiment was effective and efficient. All three of my lines of best fit were straight lines, which indicates that the two variables are proportional, as I had expected. I think I made sure that my experiment was a fair

1. The Stiffness Of Springs

A spring similar to the ones I am using becomes permanently deformed when the force becomes greater than approximately 12 N. Therefore I cannot use that much force onto my springs as it will give me incorrect results. To be on the safe side I am only going to use

2. Stretching Springs/Hookes Law.

and was appointed Gresham Professor of Geometry at the University of Oxford in 1665. After the Great Fire of London in 1666, he was appointed surveyor of London, and he designed many buildings, including Montague House and Bethlehem Hospital. Hooke anticipated some of the most important discoveries and inventions of

1. An experiment to investigate and determine how rubber behaves when tension forces are applied ...

The two graphs that intend to construct are illustrated and labelled below: Apparatus 1. Working surface so that I can conduct my experiment on this and make sure that it is stable otherwise this could affect my end results as the rubber band may behave differently and is easily able to stretch and then compress again.

2. An Experiment To Examine the Effect of Springs In Parallel

The extension will decrease and will be half the original extension because there are now two springs to share the load. The molecules in each spring have half the amount of force acting on them now, than when there was only one spring, so they are not stretched apart that much.

1. Investigation into the elasticity of a set of springs under differing conditions.

The definition of Hookes law is as follows: An object obeys Hookes Law if the extension produced in it is proportional to the load. I expect that the spring stiffness (k) will change depending on the arrangements of the springs i.e.

2. Study the interference of light using Helium - Neon Diode Laser.

No light is therefore seen at P. With a wave crest from A Arriving at a P at the same time as a wave trough from B, the permanent dark band here is said to be due to destructive interference of the waves from A and B.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to