• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate Hooke's law, using masses and springs.

Extracts from this document...


Aim My aim is to investigate Hooke's law, using masses and springs. Background knowledge When weights are attached to one end of a spring it stretches. Hooke's law states that the extension depends directly on the load, that is: Extension (E) is proportional to the load (M) added. So if this is true doubling the load should double the extension. I know the limit of proportionality is when the spring becomes less stiff and the same force causes a greater stretch than below the limit of proportionality. If you carry on exerting a force on the spring then it looses its elasticity and will not return to its original shape. Prediction As the extension is proportional to the force (load) I think the spring will obey Hooke's law until the limit of proportionality. Plan I think the best way to display my results are in a graph because then you can see exactly how the spring obeys Hooke's law, you then also see where it reaches it's limit of proportionality. ...read more.


Here are some ways to make it safer: * You could wear goggles when placing more weights onto the mass holder. * Place the weights on at arms length. * Place the weights on the mass holder gently do not drop them on it. * Make sure the large weight holding the clamp on the table is secure and will not fall off. * When placing weights on the mass holder don't let anyone stand in a 2m radius of the experiment. * When the spring looks like it will break abort the experiment. Fair test Ways of making it a fair test are: * Trying to get springs that are the same strength. * Always using the same weight intervals. (100g) * Always try and read the ruler from the same point. * I will do the experiment 4 times because you then have a smaller chance of having errors and if you have a bad reading you can compare it with the rest. * To make it a fair test whenever I start the experiment I will always finish it, and if for some reason I can't, when I come back to it I will start it again. ...read more.


- Biggest = 3.72 - 3.95 = -0.23 - = Average ext. - Smallest = 3.72 - 3.375 = 0.35 From this I can see my largest error to be only 0.35cm. I can extend this to say my experimental error is +/- 0.35cm per 100g extension. Because this figure is small it shows I have executed the experiment reliably. Evaluation The results that are in red I have ignored because they do not follow my pattern and are anomalous results. A reason for them being like this could be due to the error of parallax. This is shown below: If I were to repeat the experiment I would try to minimise the magnitude of errors by using a more accurate method of measuring the extension. At the moment I am just using a ball of plastercine and a paper clip, there are many ways of decreasing the margin of error for example using lasers but this is prohibitively expensive and add an added danger. For the amount of reduction in error this would be pointless as there is always going to be a slight error. Conclusion I have found that the extension is proportional to the load and therefore I have satisfied my original prediction. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Hooke's Law.

    Another measure I am taking is that I shall not be the only one to take readings from the metre rule; I shall have two other peers who will also be reading off the same metre rule. From these 3 readings I shall draw up averages of level of weight applied to the spring.

  2. Study the interference of light using Helium - Neon Diode Laser.

    Light from ka small filament lamp is focused by a lens On to a narrow slit S, such as that in the collimator of a spectrometer. Two narrow slits A, B about 0.5 millimetre apart, are placed a short distance in front of S, and the light coming from A,

  1. Investigation on springs.

    I will show what happens using a graph and diagrams: Ext B (Cm) P E O F (N) When a ductile material is stretched it obeys Hooke's Law up to the limit of proportionality marked E on the graph. If the material is stretched further up to its elastic limit

  2. Investigation into the elasticity of a set of springs under different conditions.

    Showing that as the load increases the extension will increase proportionally. But this only resembles a single spring on its own. Having springs in parallel or in series will effect the springs constant. I predict that the springs in parallel will half the spring constant and when the springs are in series the springs constant should double.

  1. Stretching Springs/Hookes Law.

    An external force applied to a material creates stress within the material; this stress causes the material to deform. The amount of deformation, as a fraction of the original size, is called strain. For many materials, including metals and minerals, stress is directly proportional to strain over a certain range of these quantities.

  2. An experiment to investigate and determine how rubber behaves when tension forces are applied ...

    This is now a considerable difference. I can take this difference to what I explained earlier on in the experiment. From research I have found out that a rubber band can be stretched to a certain point until released where it would return to its original shape and length.

  1. Investigate stretching using Hooke's Law.

    75mm 0.5N 77mm 2mm 75mm 1.0N 80mm 5mm 75mm 1.5N 84mm 9mm 75mm 2.0N 88mm 13mm 75mm 2.5N 94mm 19mm 75mm 3.0N 104mm 29mm 75mm 3.5N 111mm 36mm 75mm 4.0N 113mm 38mm 75mm 4.5N 122mm 47mm 75mm 5.0N 133mm 58mm 75mm 5.5N 144mm 69mm 75mm 6.0N 156mm 78mm 75mm 6.5N

  2. I intend to investigate whether any correlation exists between the wavelength of light exerted ...

    The brightness of the LED can be calibrated out, but nothing short of purchasing higher tolerance LED?s will rectify the range of wavelengths. This can therefore not be rectified. I will express this uncertainty on my final graph with error bars.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work