• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

Investigate the relationship between electromagnet strength and amount of current flowing through the wire.

Extracts from this document...

Introduction

image00.png

image01.png

image02.png

image03.png

Investigate the relationship between electromagnet strength and amount of current flowing through the wire.

1. PLAN:

Diagram:

image10.pngimage04.png

image06.pngimage05.png

image07.png

image08.png

image09.png

The Experiment:

I set up the equipment as shown in the diagram above. I put the variable resistor in the circuit to vary the current flow. I put the ammeter in the circuit to measure current flow at certain points. I then added an electromagnet to show that when electricity flows through a wire wrapped around a magnetically soft iron core, a magnetic field is created. I also added the electromagnet because we needed it to investigate the relationship between electromagnet strength and the amount of current flowing through the wire. Moreover, I added a battery consisting of 3 cells to provide electrical energy to the circuit. Furthermore, I added a load to the electromagnet to provide a measurement of magnetic strength of the electromagnet. Finally, I needed the clamp stand to hold the electromagnet and to balance the load. I also kept all the equipment the same throughout the whole experiment to maximise efficiency.

   In this experiment there were 2 variables; the independent variable (the current) and the dependant variable (the mass to pick up). However, to keep this test as fair as possible, I tried to minimise the effect of the variables on the experiment. Firstly, I  tried to measure the readings from the ammeter as accurately as possible (to the nearest 0.01 or 0.02 amps). Then, I tried to measure the load as accurately as possible.

...read more.

Middle

   However, if I do not reach the part of the graph where the points level off (if there is not enough current to line most of the domains up), then I will only plot the first part of the S-shape, corresponding to an x2 graph (a parabola of a quadratic equation).

   As a summary, I believe that as the current increases, more mass will be picked

...read more.

Conclusion

   The third factor, which may have affected my results, was the error in my measurements of mass. The masses I used (excluding the mass of the hook, attached to the electromagnet to hold the masses) were either 100g masses or 50g masses. This meant that the error in measurement was 50g. This made the test unfair, creating possible anomalous results. However, I tried to keep the graph as fair as possible by creating error bars on the graph to account for this factor.

   Finally, I could make a few improvements to this experiment, to make it even fairer. Firstly, I could perhaps record my current every 0.1A rather than 0.2A as this helps to make the experiment fairer with a smaller error range.

   I could also repeat the experiment 5 or 6 times to iron out any outliers and keep the results as compact as possible, with an almost perfect correlation for the graph.

   Lastly, instead of using masses of 50g, I could use masses of 10g. This would help to reduce the size of the error bars shown on my graph.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. The aim of the experiment is to verify the maximum power theorem and investigate ...

    It shows that the magnitude of static friction increases when we apply a larger force in the opposite direction. The static friction is direct proportional to the applied force. The static friction balances the applied force until it reaches the limiting friction which is the highest point of the graph.

  2. Free essay

    Resistance of a wire

    BUT we did retest the wire to ensure we had the correct thickness, just the wire could have been worn down. We did a further 3 tests on the wire using the micrometer to get the thickness of 28 swg again.

  1. Investigating the effect of 'length' on the resistance of a wire

    Therefore, a power supply would be able to provide the exact voltage, minimising error. * I would use a digital voltmeter and ammeter as these would be more accurate than the analogue one, and the possibility of me reading the wrong value would also be lower.

  2. resistivity if a nichrome wire

    Calculating the cross sectional area of the nichrome wire I will measure the diameter of the wire using a screw gauge. I will take this reading from 3 parts of the wire (at 20cm, 50cm and at 80cm). I will then work out the average. Length Diameter (m) Average (m)

  1. Investigating how temperature affects the resistance in a wire

    Instructions: 1. Set up the apparatus according to the diagram as above. 2. Fill the kettle with tap water and turn it on, making sure that throughout the experiment it is on and full of hot water and that it is 50cm away from the rest of the apparatus. 3.

  2. investigating the relationship between the diameter and the current in a wire at its ...

    Determining a maximum and minimum diameter for the wire I decided to use the maximum and minimum values of wire that were available. These were 14SWG and 32SWG. I decided to use all of the available thicknesses as it would give me a more accurate set result.

  1. How does the mass of copper plated in the electrolysis of copper sulphate solution ...

    Furthermore, we are going to keep the depth of the solution the same because I want the same amount of copper ions in the solution and this also links in with the emersion of the electrodes in the copper sulphate solution so also the same depth is going to keep

  2. Write an account of how plants defend themselves against attack by pathogens and parasites.

    Cork cells in sweet potato reduce Rhizopus soft rot. - Rapid wound healing - Abscission layer formation which is when the plant excises a portion of itself in order to benefit the rest - Formation of tyloses which are overgrowths of the protoplasts of adjacent living parenchyma cells that extend into the xylem vessels.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work