• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate the relationship between temperature and resistance in a thermistor.

Extracts from this document...


Thermistors Investigation

To investigate the relationship between temperature and resistance in a thermistor.


A current is the flow of charge round a circuit, this can be in the form of ions in a liquid or electrons in a metal.

Resistance is anything that slows the flow of electrons round the circuit.

Ohm's law states that the voltage is equal to the current multiplied by the resistance - V=IR

This can be re-arranged to say R=V/I.

Ohms law states that in a metal component the ratio of voltage to current remain constant, meaning that the resistance stays the same as long as the temperature remains the same. In this experiment I will be changing the temperature therefore this rule will not apply, however the equation R=V/I is always true as it is the way resistance is defined.

In a wire when the temperature is increased the resistance increases. This is because at a higher temperature the lattice atoms are vibrating faster and are colliding with the electrical current and slowing down the flow of charge.

This is also true in a thermistor but there is another competing effect because it is a semiconductor. Being a semiconductor means that the outer electrons are not free at room temperature but when heated the get more energy and are freed. This means that there are more electrons available to conduct.

...read more.



Experiment Diagram


Temperature (0C)

Current (A)

Voltage (V)

Resistance (Ohms)

Average Resistance (Ohms)

Trial 1

Trial 2

Trial 3

Trial 1

Trial 2

...read more.


0C and see if the resistance would start to increase again after the thermistors atoms have lost all their outer electrons and the lattice atoms continue to move faster slowing down the flow of current. I could not use water to do this as water can not be heated beyond 1000C, I would have to use a liquid with a higher boiling point such as oil. For this experiment I would set up the equipment in the same way but use oil instead of water and continue beyond 1000C. I could also investigate whether the length of a wire had an effect on the resistance of the circuit there would be more lattice atoms and may be a higher resistance.

I would also like to try lower temperatures to see if there was a minimum energy needed to free the electrons if so the graph would be-


...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    The type of flame I use to heat my water/oil bath must also stay constant because different types of flames give off more heat for example a roaring blue flame gives off a lot more heat than a large yellow flame (the safety flame)

  2. Experiments with a thermistor

    * When I used the melting ice to record the voltage reading, the temperature was not exactly at 0oc. The ice cubes were not fully grinded to give a larger surface area and were virtually still in a solid state, and therefore there might be a little error in its voltage reading.

  1. Investigating Ohms law

    3.20 186.1 3.40 191.8 3.40 191.8 3.40 191.7 3.40 191.8 3.60 197.6 3.60 197.7 3.60 197.5 3.60 197.6 Conclusion/Analysis After tabulating all the results I got for all three experiments, I drew graphs for each component. As you can see in my graphs, my graph for the metal wire has come out to be a straight line.

  2. Investigation into how the resistance of a thermistor varies with temperature.

    Evidence The primary current readings graph shows that as the temperature rises so does the flow of current. With one battery in the circuit the current rises steadily with the temperature. With two batteries the current rises faster and with three batteries it rises faster still.

  1. Investigating the relationship between pressure, volume and temperature of a gas

    1.150 96 8.5 1.175 The graph of h against T was plotted below: From the equation y = 0.0369x + 4.9935, when y = 0, x-intercept = -4.9935/ 0.0369 = -135oC The graph of P against T was plotted below: From the equation y = 0.0027x + 0.907, when y

  2. Investigating a Thermistor.

    However, not only does the conduction band contribute to these currents,- as an unoccupied state in the valence band is called a hole, an to compensate for this, electrons in the valence band move to fill the 'hole states'.

  1. To investigate how the temperature affects the resistance of a thermistor.

    In insulators the gap between the conduction band and the valence band is extremely large and almost no amount of energy given to the electrons will be enough for them to jump to the conduction band. This means that electricity cannot pass through these substances and explains why they do not conduct electricity.

  2. Investigating the effect of 'length' on the resistance of a wire

    to see which type, diameter of wire and the input current is the best for my investigation to give me a suitable range of current values and so that the results are more reliable, so if there was to be problems then they would be solved before the real experiment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work