• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate the variation of the resistance of a thermistor with different temperatures.

Extracts from this document...

Introduction

Kiron Nandhra 12KFA

Advancing Physics 7285

Instrumentation Task

Sensor Project

Introduction

For this experiment I am going to investigate the variation of the resistance of a thermistor with different temperatures. The resistance will be tested at every 5 degrees, with a range from 90 C down to 5 C, and these results will be recorded. After recording the results, the experiment will be repeated at a total of 3 times, this is so we can get an average that should be correct and accurate.

Plan: Sensor circuit

The following below, are what are needed for me to complete my task:

  • One thermistor
  • Digital multi-meter with a setting to read resistance in Ohms to 2 decimal places

The sensor circuit’s purpose is to sense the change in temperature in a domestic water tank. For example it will be able to sense and recognise when the water is very close to boiling point and if it has dropped to close to freezing point. If it gets to hot, the sensor would cause the heater to be switched off. If it gets too cold, the sensor would cause the heater to be switched on, so avoiding the risk of burst pipes due to freezing. On separate circuits there will be many thermistors flooded in the water at different points, so we are able to find an overall temperature in the tank.

...read more.

Middle

Hypothesis

I predict, therefore that the resistance in any experiment will rise as the temperature of the water falls.

Results

Temperature

Resistance

Resistance

Resistance

Resistance

(C)

(Ohms)

(Ohms)

(Ohms)

(Ohms)

...read more.

Conclusion

To improve this, we would use an Amplifier, which alerts the danger much faster. A thermistors response time is usually slow, however, with the aid of an Amplifier, problems will be alerted much sooner. It works by sensing on small changes in resistance through the thermistor. The amplifier then picks up on this, then amplifying the current at a much faster speed so the circuit responds quicker. When the temperature exceeds 65 C or drops below 25 C, my circuit will recognise this and respond by passing the information to an additional circuit, which will respond by cooling or heating the water. Heating if below 25 C, or cooling if above 65 C.

My circuit would look like this. It’s a circuit from ‘Advancing Physics A1, IOP Publishing’      

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    Preliminary Test: In my preliminary tests I needed to find out; o The best possible way of heating the thermistor o The range and size of data I record o What the resistance need to be measured in ie.

  2. Investigate the relationship between temperature and resistance in a thermistor.

    In the three experiments we did the resistances were very similar with very little disparity between them which shows the experiment was precise. There is only one clear anomalous result which is at 300C I think this is because the thermistor had not got the a high enough temperature for many of the atoms to free electrons.

  1. Experiments with a thermistor

    * When I used the melting ice to record the voltage reading, the temperature was not exactly at 0oc. The ice cubes were not fully grinded to give a larger surface area and were virtually still in a solid state, and therefore there might be a little error in its voltage reading.

  2. I am going to investigate what the resistivity is of a pencil lead. ...

    I will then setup the circuit that is displayed above. The reason why I will be using a potential divider circuit is because I can get a higher range of voltages as well as it also helps in getting the voltage more accurate.

  1. To investigate how the temperature affects the resistance of a thermistor.

    In insulators the gap between the conduction band and the valence band is extremely large and almost no amount of energy given to the electrons will be enough for them to jump to the conduction band. This means that electricity cannot pass through these substances and explains why they do not conduct electricity.

  2. To conduct an experiment that proves that asensor is affected by temperature. In my ...

    The thermometer was held in place by a clamp and boss so my readings were much more reliable. However the temperature was still observed by my eye and so still unreliable. Next, I took my beaker and filled it with water about a quarter of the way up and placed ice and (if necessary)

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    Brightly lit Voltage (Volts) V Current (Amperes) A Increasing Current (Amperes) A Decreasing Current Average Resistance (ohms) 0.1 V 0.2 V 0.3 V 0.4 V 0.5 V 0.6 V 0.7 V 0.8 V 0.9 V 1.0 V This will be for the brightly lit room.

  2. silicon project

    Slide 11 When reverse-biased, an ideal diode would block all current. A real diode lets perhaps 10 microamps through -- not a lot, but still not perfect. And if you apply enough reverse voltage (V), the junction breaks down and lets current through.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work