• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate the variation of the resistance of a thermistor with different temperatures.

Extracts from this document...

Introduction

Kiron Nandhra 12KFA

Advancing Physics 7285

Instrumentation Task

Sensor Project

Introduction

For this experiment I am going to investigate the variation of the resistance of a thermistor with different temperatures. The resistance will be tested at every 5 degrees, with a range from 90 C down to 5 C, and these results will be recorded. After recording the results, the experiment will be repeated at a total of 3 times, this is so we can get an average that should be correct and accurate.

Plan: Sensor circuit

The following below, are what are needed for me to complete my task:

  • One thermistor
  • Digital multi-meter with a setting to read resistance in Ohms to 2 decimal places

The sensor circuit’s purpose is to sense the change in temperature in a domestic water tank. For example it will be able to sense and recognise when the water is very close to boiling point and if it has dropped to close to freezing point. If it gets to hot, the sensor would cause the heater to be switched off. If it gets too cold, the sensor would cause the heater to be switched on, so avoiding the risk of burst pipes due to freezing. On separate circuits there will be many thermistors flooded in the water at different points, so we are able to find an overall temperature in the tank.

...read more.

Middle

Hypothesis

I predict, therefore that the resistance in any experiment will rise as the temperature of the water falls.

Results

Temperature

Resistance

Resistance

Resistance

Resistance

(C)

(Ohms)

(Ohms)

(Ohms)

(Ohms)

...read more.

Conclusion

To improve this, we would use an Amplifier, which alerts the danger much faster. A thermistors response time is usually slow, however, with the aid of an Amplifier, problems will be alerted much sooner. It works by sensing on small changes in resistance through the thermistor. The amplifier then picks up on this, then amplifying the current at a much faster speed so the circuit responds quicker. When the temperature exceeds 65 C or drops below 25 C, my circuit will recognise this and respond by passing the information to an additional circuit, which will respond by cooling or heating the water. Heating if below 25 C, or cooling if above 65 C.

My circuit would look like this. It’s a circuit from ‘Advancing Physics A1, IOP Publishing’      

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    Preliminary Test: In my preliminary tests I needed to find out; o The best possible way of heating the thermistor o The range and size of data I record o What the resistance need to be measured in ie.

  2. To investigate how the temperature affects the resistance of a thermistor.

    One factor that must be kept constant during my experiment is the voltage and current in the circuit. This need to stay the same because I am changing the temperature in order to investigate the resistance of the thermistor and because both voltage and current affect the resistance in a

  1. I am going to investigate what the resistivity is of a pencil lead. ...

    I will then set the voltage at a suitable start point by using the power pack to adjust the voltage but will look at the voltmeter across the pencil lead, as this is what I am measuring. I will probably use intervals of 0.1V and increase it at equal intervals using the variable resistor.

  2. physics sensor coursework

    For each light intensity, I will take three readings. This is my final method: i. Set up new design of sensor circuit. ii. Turn off all the lights in the dark room. iii. Connect up the lamp and set the power supply to 10V. iv. Measure the light intensity beside LDR using a light meter.

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    not touch any other part of the circuit except for the thermistor. * Gloves should be worn when handling the hot oil or the Bunsen burner. * Goggles should be worn in case the oil splashes out. * The table should be used to check the accuracy of the results

  2. Experiments with a thermistor

    I prepared two beakers, one containing tap water at a temperature of around 20oc (Beaker 1) and the other one containing boiling water at 100oc (Beaker 2). I then set up a circuit as shown below:- Potential Divider Circuit

  1. Investigating how temperature affects the resistance in a wire

    I am using this instead of the last apparatus I used for simplicity and so that no extra standard wire has to be used (so it cuts down on the amount of wire in the circuit). Because there is no name for this piece of apparatus, I will refer to it here on with the name, 'Apparatus A'.

  2. An Investigation into the Resistance of a Thermistor, its Application as a Sensor and ...

    Calculated Resistance (in ohms accurate to � 10%) 25 470 30 380 35 309 40 253 45 209 50 173 55 144 60 121 65 102 70 86.2 75 73.4 80 62.8 I predict that the results should be similar in both value and certainly in trend as the above table's. Results The results have been tabulated below.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work