• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating factors which affect the period of an oscillating spring

Extracts from this document...

Introduction

Investigating factors which affect the period of an oscillating spring Introduction I have decided to investigate factors, which affect the period of an oscillating spring. Possible factors, which I could investigate, are as follows: * Mass of weight hung on spring * Distance spring is pulled down * Spring used The factor that I have chosen to investigate is the effect of hanging different masses on a spring will have on the period of one complete oscillation of that spring. Prediction I predict that as the mass hung on the spring is increased the period of one complete oscillation will also increase. The formula for kinetic energy is KE=1/2mv2 for all masses hung on the spring the energy within the spring should always remain the same. So according to the formula KE=1/2mv2 As mass increases on the spring there will be a decrease in velocity. Variables Independent variable Dependant variable Control Mass hung on spring The period of one Spring used Complete oscillation Distance spring pulled down The ruler used Safety I will wear safety goggles in case the spring brakes also I will make sure I don't pull the spring down to much with the heavier masses because the spring might become unhooked and weight would fall all over the place. ...read more.

Middle

to gain the average time for one complete oscillation. I will also get an average all three results and record all my data in a results table. I will set the stopwatch to zero, load the fist mass on pull the spring down 5cm, start the stopwatch and at the same time release the spring. Stop the stopwatch after 10 complete oscillations and record my results in a table. Repeat this for the other 9 masses and then repeat the whole experiment twice. I will then work out the average for all 3 results and record them in my results table. Results Mass (g) Pull Down (cm) For 10 oscillations 1 For 10 oscillations 2 For 10 oscillations 3 Average For 10 Average For 1 100 5 4.2 4.0 4.1 4.1 0.4 200 5 6.0 6.0 5.7 5.9 0.6 300 5 7.2 7.6 7.4 7.4 0.7 400 5 8.1 8.1 8.4 8.2 0.8 500 5 9.0 8.6 8.9 8.8 0.9 600 5 9.5 9.8 9.6 9.6 1.0 700 5 10.7 10.3 10.4 10.5 1.1 800 5 10.9 10.6 10.4 10.6 1.1 900 5 11.0 11.1 11.0 11.0 1.1 1000 5 11.9 12.0 12.3 12.1 1.2 Farid Din 11LO Analysis I ...read more.

Conclusion

My results were very accurate with only a few anomalies. In my graph "period against mass" there is an anomaly marked A this is probably because I pulled the spring to far down so the oscillations occurred quicker due to more energy in the spring. In my graph "t2 against M" there are 2 anomalies marked A and B, possible cause for these maybe the spring was starched beyond its elastic limit with the heavier weights. If I was to improve my experiment I would use more variety of masses although that might cause elastic limit to be reached in the spring I will also consider using a different spring one which can withstand the extra weight. Or I could go up in 50g instead of 100g so I could get a better idea of how much the period of one complete oscillation increases as mass increases. Both of these suggestions give more accurate and reliable results and would give a better average. My experiment supports the conclusion that increased mass increases the period of one complete oscillation of that spring. I would need more time to be able to repeat the experiment and a wider range of masses and larger number of readings. This would give more accurate results. Farid Din 11LO ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Peer reviewed

    See how one factor affects the period of time a mass on the end ...

    3 star(s)

    Time 10 oscillations, and divide this answer by 10. The reason I will time 10 and divide by 10 is that it is far more accurate than trying to measure one. 5. Record the results 6. Do each experiment three times to produce more reliable results when an average is taken.

  2. Find out what factors effect the stretching of a spring.

    This extension is measured in N/m (Newtons per Metre) the figure for this is the amount of Newtons that would have to be added to the spring in order for it to have an extension of 1metre. The spring constant that my experiments gave were 28.7769 N/m for the Hookes

  1. What factors affect the period of a Baby Bouncer?

    * The stiffness & the strength of the spring: To change the shape of the spring, a pair of forces is required: When a spring is squashed, (thus shortening it), the forces are compression forces, but when the spring is stretched the forces are tensile forces.

  2. An investigation into the time period of a mass-spring oscillating system.

    proportional to how far the mass has to travel, so when the mass is increased, the oscillations must be slower. Results Mass on spring(g) T1 (secs) T2 (secs) T3 (secs) T average(secs)

  1. Investigating the Vertical Oscillations of a Loaded Spring.

    do 10 oscillations are nearly the same, even though the amplitude was different. This means that the amplitude doesn't matter when the load is dropped. So the height won't affect the time of oscillations, it doesn't matter where you let go of it, because it won't affect the time of oscillations.

  2. The experiment involves the determination, of the effective mass of a spring (ms) and ...

    The readings are shown in the order that they were taken. They were taken in this order, to check that the masses, which were to be used were usable. i.e. the smaller masses did not oscillate to quickly to be measured and that the larger masses did not damage the spring.

  1. An Investigation into the Factors, which affect the Voltage Output of a Solar Cell

    Another way in which I will make my results more reliable is by placing black paper to act as a boarder around my experiment. This will ensure that no other surrounding light will affect my results. The Results of my Preliminary Experiment The amount of solar cell covered in cm.

  2. The Oscillation Of A Spring.

    The first thing I did was a test to see whether the size of a spring affects the way it oscillates. By having three largely different springs and oscillating them, it was clear that the larger and heavier the spring, the slower it oscillated.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work