• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating Force, Mass and Acceleration using a Trolley

Extracts from this document...


Investigating Force, Mass and Acceleration using a Trolley Aim of experiment: Using simple trolley experiments, take suitable measurements from them to find the Mass of the trolley, the fraction force acting in the system and to investigate any other effects found when using apparatus. Let M = the mass of the trolley (A), MA = Mass added onto the trolley MB = the mass of the hanging mass (B) t = Tension in the string g = Gravitational force = 9.8 N R = the resistive force acting in the system. i.e. Fraction between the track and the trolley, fraction force in the pulley and air resistance. The Diagram above shows the setup of apparatus for the particular experiments. The acceleration meter measures the acceleration of the system by measuring the time taken through each of the 4cm cardboard and the time interval (t) between the two cardboards. The speed (u, v) through each of them is calculated and the acceleration is calculated using the formulae. a = (v - u)/ t Two sets of experiments are carried out: First experiment: 0.09 kg of mass (MA) is placed on the trolley and the hanging mass (MB) is 0.01 kg at the start. The acceleration of the system is measured. ...read more.


N on the system. Using the equation obtained before: a = (MBg - R) / (M + MA + MB) Let k = factor of M 1 ? k ? 5 a = (MBg - R) / (kM + MB) a = (0.06g - R) / (kM + 0.06) The Table below shows the results obtained form this experiment. k Mass/(kM)kg Acceleration1 / ms-2 Acceleration2 / ms-2 Acceleration3 / ms-2 Average Accel / ms-2 1 1M 1.22 1.22 1.20 1.21 2 2M 0.61 0.61 0.61 0.61 3 3M 0.41 0.40 0.41 0.41 4 4M 0.30 0.29 0.30 0.30 5 5M 0.22 0.23 0.21 0.22 The Graph show that a is approximately equals to 1.24 k-1. The Acceleration is inversely proportional to k and as k doubles, the acceleration halves. In order to prove that a = (0.06g - R) / (kM + 0.06) supports the graph and the data from the second experiment. A graph with inverse acceleration (1/a) against k is plotted. Graph showing 1/a against k By making a into 1/a in the equation. The equation of the graph could be formed. a = (0.06g - R) / (kM + 0.06) 1/a = (kM + 0.06) / (0.06g - R) 1/a = kM/ (0.06g - R) ...read more.


1.53 0.03 1.74 1.72 1.7 1.72 0.04 1.97 1.94 1.93 1.95 0.04 A same graph for the first experiment is plotted but with error bars. The maximum and minimum of the mass of trolley and the resistive force is calculated. The line represent the maximum regression F = 0.4933A+ 0.0439 M + 0.1 = 0.493 R = 0.0439 N M = 0.393 kg The line represent the minimum regression F = 0.4739A + 0.0425 M + 0.1 = 0.474 R = 0.0425 N M = 0.374 kg 0.393 - 0.383 = 0.01 0.0439 - 0.0434 = 0.001 0.374 - 0.383 = -0.01 (2d.p.) 0.0425 - 0.0434 = -0.001 (3d.p.) Therefore the mass of the trolley is approximately 0.38 +/- 0.01 Resistive force is approximately 0.043 N +/- 0.001 The final result I obtain is only an approximate value due to the fact that there is uncertain errors caused by the light gate, the inclination of the track and the variation of the mass used. In the second experiment the resistive force of the system is proved to be inconstant as the mass of the trolley increase and this could cause errors on the results I obtained from the first experiment because the mass of the trolley is not constant and I assumed the resistive force to be constant in the calculation. ?? ?? ?? ?? JUSTIN WONG 4/23/2007 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Mechanics & Radioactivity essays

  1. Free essay

    The acceleration of a ball down various inclines

    3 star(s)

    This probably made the results more inaccurate, therefore it was necessary to measure each incline 10 times rather than 5, to receive consistency in my results and to minimise random errors as much as possible. Also, I used a technique which assisted the accuracy of my results, by videotaping the

  2. Peer reviewed

    Aim:To find out whether or not the angle of the ramp affects the acceleration ...

    3 star(s)

    tape increase; this allows one to measure the acceleration/speed of the object at that moment in time.

  1. Centripetal Force

    paper clip was just below the lower end of the glass tube. 4. 50 revolutions of the bung are timed and the angular velocity is calculated. 5. The mass of the rubber bung and the slotted weights is found. The tension T in the string is given by the weight of the slotted weights.

  2. Physic lab report - study the simple harmonic motion (SHM) of a simple pendulum ...

    -2.45E-01 -4.59E-01 <BR />1.80E+01 1.13E+00 1.04E-01 -1.02E-02 -2.75E-01 -4.59E-01 <BR />1.90E+01 1.20E+00 8.56E-02 -6.11E-03 -2.75E-01 6.64E-06 <BR />2.00E+01 1.27E+00 6.11E-02 -2.04E-03 -3.67E-01 -1.38E+00 <BR />2.10E+01 1.33E+00 3.87E-02 2.04E-03 -3.36E-01 4.59E-01 <BR />2.20E+01 1.40E+00 8.15E-03 -2.04E-03 -4.59E-01 -1.83E+00 <BR />2.30E+01 1.47E+00 -1.63E-02 0.00E+00 -3.67E-01 1.38E+00 <BR />2.40E+01 1.53E+00 -4.69E-02 2.04E-03 -4.59E-01

  1. Investigating the Inverse Square Law

    Since I ? C: C ? 1 (d + d0)2 Therefore: d + d0 ? 1 Vc I ? 1 r2 Where: * d = distance * d0 = distance to be added to the measured distance, d, because of the reference point on the holder not coinciding with the

  2. OCR B Advancing Physics Physics Practical Investigation Coursework Investigating Simple Harmonic Oscillations

    To calculate an approximate percentage change, where the lines of best fit are almost equal in gradient (0.4 and 0.44), the first point was removed. The intercepts differ by 7.92 meaning that, over this range of values, the amplitude is reduced by approximately 8cm by the damping effect of the water.

  1. In this experiment, I predict that as the force increases, as will the acceleration. ...

    A computer is used rather than the naked eye because the computer can be precise to 2 decimal places (d.p). Once the slide has passed through both light gates, it is moved around both light gates and the experiment is repeated.

  2. Multi-bladed Pumps. Does the number of propellor blades affect the efficiency of a ...

    � strength of gravity at sea level (g) � height through which the water is raised (?h)) / time taken (t) Pout = mwaterg?ht-1 The mass of water is proportional to its volume at constant temperature and atmospheric pressure. In these experiments, the temperature and pressure have been constant at 293K (20�C)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work