• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Investigating how the length of a wire affects its resistance

Extracts from this document...

Introduction

Physics Coursework

Investigating how the length of a wire affects its resistance

Sean Connolly 12M

I have decided for my coursework that I will investigate how length affects the resistance of a wire.

Background information on resistance

In 1826, George Ohm discovered that:

The current flowing in a metal is proportional to the

Potential difference across it providing the temperature

remains constant.

He then developed a formula: -

Resistance (R) = Voltage (V) ÷ Current (I)

Resistance is a measure of how easily the electrons can move through a metal. Therefore a low resistance means that the electrons can move more easily.

Aim

In my investigation I shall try to see if the length of a piece of wire affects its resistance.

Prediction

I predict that the length of wire will affect its resistance. I am making this prediction because all metal s contain electrons in their outer shell. The larger the surface

Middle

Results

For each length of wire I will use a table like this: -

 Setting Voltage (V) Current (A) Resistance (Ω) 1 2 3 4 5   I will then get the average resistance by adding all five resistances up and diving by 5.

I will then draw 5 separate graphs for each length showing voltage against current.        Then I will incorporate all 5 lengths into one graph to show the changing trends.      Finally my last graph will include length against average resistance.  Table of Results

10 CM

 Setting Current (A) Voltage (V) Resistance (Ω) 1 0.6000 0.1500 0.2500 2 0.5000 0.1255 0.2510 3 0.4000 0.1015 0.2538 4 0.3000 0.0760 0.2533 5 0.2000 0.0510 0.2550

Average Resistance =  0.2526Ω

20 CM

 Setting Current (A) Voltage (V) Resistance (Ω) 1 0.4500 0.1500 0.3333 2 0.3500 0.1180 0.3371 3 0.2800 0.0920 0.3259 4 0.2000 0.0653 0.3265 5 0.1200 0.0400 0.3333

Conclusion      X1= 0.3000, Y1= 0.0760, X2= 0.6000, Y2= 0.1500

Y2-Y1÷X2-X1

= 0.1500-0.0760÷0.6000-0.0760

=0.0740÷0.3000

= 0.2467Ω

My average resistance for 10Cm was 0.2526Ω. My answer for the resistance of the graph was 0.2467Ω. This shows that my graphs and tables are very accurate and that the straight line on the voltage-current graph represents resistance.

I feel that my results gained were reliable as all my results tallied. But at times the voltage and current readings on the voltmeter and ammeters flickered giving me at times, inaccurate results. If I were to repeat the experiment I would use much more up to date meters. I feel that some of my graphs did not turn out the way I would have liked them because I didn’t take enough readings in the practical. If I had have taken more results them my graphs would have been much more accurate. I do though however feel that the evidence is sufficient to support my predictions as my results turned out to be accurate and they supported my predictions well.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Electrical & Thermal Physics essays

1.  ## Measurement of the resistivity of Nichrome

5 star(s)

From Wikipedia, I have found the electrical resistivity of Nichrome at room temperature is 1.08 � 10-6?�m, which is very near to the value I have got. However, it is still likely to be a bit higher than expected. Hereunder is the uncertainty and error analysis As Nichrome is an alloy, the resistivity won't be affect much by temperature.

2. ## Investigate how the temperature affects the resistance of a thermistor.

I also conclude that the behaviour of a resistance is that from a low temperature the resistance of a thermistor drops quickly and then begins to decrease at a slower rate until it reaches a point at which the resistance stays at a constant unit which I think would be 0?

1. ## Thermistor Coursework

R2 This is the apparatus that I will use: One lab power pack of 5v One thermistor (resistance to be decided) One variable resistor (resistance to be decided) One glass thermometer 0°C to 100°C One 200 cm3 beaker A voltmeter/ohmmeter Two crocodile clips Five banana-plug wires One kettle Ice cubes Diagram of setup.

2. ## Investigating the effect of 'length' on the resistance of a wire

A variable resistor consists of a conducting track of resistance material with a fixed contact at one end and a sliding contact on the track. Moving the contact along the track changes the length of material and also the resistance between the contacts.

1. ## To investigate how the temperature affects the resistance of a thermistor.

This is because as the energy from the heat increases, more electrons jump the gap between the valence band and the conduction band so they increase the current. If you look at the equation I mentioned in my background information (Resistance (?)

2. ## resistivity if a nichrome wire

Measure the diameter of the wire using a micrometer screw gauge. It is taken in three places along the wire, and an average reading is taken. [D1 +D2 + D3 / 3]. 2. Find the area of the nichrome wire using the formula of, ensuring that the radius is converted into meters.

1.  ## Resistance of a wire

This supplied sufficient and reliable results and didn't damage any of the equipment. During the test I also found that results varied due to leaving the wires to cool sometimes and testing 3 different distances back to back quickly. So in the final experiment I will leave the wire to cool for 30seconds between each change in distance.

2. ## physics sensor coursework

= (V1 + V2 + V3)/ 3 Average V = (13.18 + 13.21 +13.18)/ 3 Average V = 13.19 V Average I = (I1 + I2 + I3)/ 3 Average I = [(1.06 + 1.11 +1.07) �10^-3]/ 3 Average I = 1.08�10^-3 A Average R = Average V/ Average I • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 