• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating into factors that effect the Current along a certain length of wire

Extracts from this document...

Introduction

Expt: investigating into factors that effect the Current along a certain length of wire Factor Chosen: I have chosen to alter the length of the resistance wire throughout my investigations experiment. It has taken careful thought over a numerous amounts of aspects I could alter, but length came out the better one for me. Prediction: I predict that, as the length of wire gets longer as will the current decrease. I also further predict that, if the length of wire is doubled so will the current halve. Once again I shall predict that in a larger wire width ways there shall be an even larger current. Justification of predictions: A current flows through a length of wire at all times and if there is enough power it should always be the same. However I feel that as the length of wire gets longer it shall take more effort and the current will decrease, as there is a further distance for it to share the current over. Below is an equation that will help me find the current however as there will be a ammeter present. I (Current in Amps) = V (Potential Difference Volts) x R (Resistance in ohms) ...read more.

Middle

0.96 1.14 1.04 0.96 24.00 25 0.86 0.87 1.05 0.93 1.08 24.00 30 0.80 0.81 0.95 0.85 1.17 24.00 35 0.75 0.75 0.85 0.78 1.28 24.00 40 0.73 0.70 0.79 0.74 1.35 24.00 45 0.67 0.64 0.69 0.67 1.50 24.00 50 0.65 0.60 0.63 0.63 1.60 24.00 55 0.62 0.57 0.57 0.59 1.70 24.00 60 0.55 0.53 0.55 0.54 1.84 24.00 65 0.50 0.49 0.50 0.50 2.01 24.00 0 1.11 1.24 1.15 1.17 0.86 32.00 5 0.97 0.89 0.91 0.92 1.08 32.00 10 0.71 0.70 0.71 0.71 1.42 32.00 15 0.58 0.57 0.58 0.58 1.73 32.00 20 0.50 0.48 0.50 0.49 2.03 32.00 25 0.44 0.42 0.44 0.43 2.31 32.00 30 0.39 0.37 0.39 0.38 2.61 32.00 35 0.34 0.33 0.34 0.34 2.97 32.00 40 0.31 0.30 0.31 0.31 3.26 32.00 45 0.28 0.27 0.29 0.28 3.57 32.00 50 0.26 0.25 0.26 0.26 3.90 32.00 55 0.24 0.23 0.24 0.24 4.23 32.00 60 0.22 0.22 0.23 0.22 4.48 32.00 65 0.21 0.20 0.21 0.21 4.84 32.00 My results shall also be shown on graphs on the next page. How the chosen factor affected the current: From looking at my results and at my graphs it is clear to me of how my chosen factor (length) ...read more.

Conclusion

If I had also had more time I would've made the following improvements to my experiment. I would've made sure that each and every wire had been sanded and made more efficient for the current to run along. I may have also made sure that before each time the battery was completely charged so that there was no reason for it to drop the results. Another thing I might have done to my experiment with a great deal more time is extending it so that I could've made further work into the factors. I may have done a whole range of widths of wire in order to compare exactly how much change there is between an SWG in the wire. A more important factor that I would have altered is the components of the wire. If I had more time I could get a number of wires made by different materials, mixtures of both that conduct and some that don't conduct at all. By doing this I could've also experimented further into the factors whether the same rules apply to different metals and alloys, it may have been that in some the thinner the wire the less the resistance. I cannot quopte anything for this however as I did not test it. Ben Smith ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigating the effect of 'length' on the resistance of a wire

    Useful Scientific Knowledge: The electric current is the amount of charge flowing every second, that is the number of coulombs per second. Electric charge is measured in coulombs (C). Electric current is measured in amperes (A): I = current (A)

  2. resistivity if a nichrome wire

    continues electrical flow, this means that they loose energy in the way as some of the energy is transferred to particles that they collide with randomly in the wire. Resistance is directly proportional to length. If I double the length of the wire the resistance increases by a factor of 2, hence doubles.

  1. Free essay

    Resistance of a wire

    Current is recorded by using an Ammeter to find out the Amperes in a circuit, Voltmeters are used to measure P.D. I will need to use both of these to measure the Current and Voltage when carrying out my experiment.

  2. How Does Resistance Change With Length Of Wire

    I must make sure that the gaps between each section off wire that I test are equal e.g. go up in tens or twenty's not random numbers like 1, 15, 22... This will insure a fair test. I predict that in this experiment that resistance will be proportional to length

  1. How different factors affect the resistance of a wire

    that resistance is also dependent on temperature, meaning that if the wire got too hot, then its own resistance would occur within the circuit due to the heat and therefore, ruin my results. * The ruler used to measure out lengths of wires Prediction and theory I predict that the

  2. The varying of the resistance of nichrome wire depending on its length

    The amount of current let through will not vary in any of the tests. However, before conducting the actual investigation I carried out a preliminary investigation in which my aim is to find out how current varies with voltage when using a fixed value resistor and when using a filament lamp.

  1. Find The Internal Resistance Of A Power Supply

    Results Setting 2V Voltage1 (volts) Voltage2 (volts) Voltage3 (volts) Average Voltage (volts) Current1 (amps) Current2 (amps) Current3 (amps) Average Current (amps) 1 1.96 1.95 1.97 1.96 0.11 0.11 0.11 0.11 2 1.94 1.94 1.93 1.94 0.18 0.19 0.18 0.18 3 1.93 1.91 1.92 1.92 0.30 0.32 0.29 0.30 4 1.87 1.89 1.86 1.87 0.44 0.40

  2. Heating Effect of a Electrical Current

    So the less water, the temperature will increase more and vice versa. Therefore water is a factor for temperature change so must be kept constant for a fair test. Why time should be kept constant: This is because if there is more time for the heater to convert the electrical energy to heat energy, the water will heat up more.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work