• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Effect of pH on the Activity of an Enzyme

Free essay example:

Investigating the Effect of pH on the Activity of an Enzyme

For this investigation, I will be finding out the effect of pH on the activity of the enzyme potato catalase. Catalase is found in all living organisms. It has one of the highest turnover rates of all enzymes; one molecule of catalase can convert millions of molecules of hydrogen peroxide to water and oxygen per second. Catalase occurs in many plant and animal tissues. It breaks down toxic hydrogen peroxide, a by-product of many bio-chemical reactions, into water and oxygen.

Variables

The variables that I will ensure remain constant through the experiment will be:

  • Substrate concentration and enzyme concentration
  • Temperature
  • Volume of substrate and volume of enzyme.
  • Volume of buffer solution used.

The independent variable (what I am changing) for my experiment, is the pH level.

I will use all 14 values of pH: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14. To make sure the solution is at the right pH I will use pH buffer solutions (solutions that maintain a constant pH). This is an easy and effective way of changing the independent variable.  

The dependent variable (what is measured as a result of change) will be the time taken for manometer fluid to rise by 5 cm due to the production of oxygen.

In experiments to confirm that one has isolated the right variable(s) they would use a control group.  

The control group will receive the same attention as the test groups; however, it will not be influenced by the variable(s) which the rest of the groups are testing.

This is advantageous in many ways.

  • Provides a baseline to which experimental results can be compared.
  • Enhances the reliability of results.
  • Prevents the effect of one variable from being drowned out by the known greater effects of other variables- this would apply if more than one independent variable was being used e.g. temperature and pH level.

However, I will not be using a control group for my experiments as it is impossible to carry an experiment out with having a “non pH” solution.

Apparatus and Chemicals

To carry out the experiment, I will need the following apparatus:

  • Stand, bosses and clamps
  • Beaker, tub, spring clip, stop clock, marker pen, forceps, ruler, ceramic tile and razor blade.
  • U-tube Manometer (easy and accurate technique of measuring the rate of production of oxygen from hydrogen peroxide in the presence of living tissue (in this case, potato)) tube- 3mm in diameter.
  • Manometer fluid-water. Oil and mercury are other options.
  • Syringes ( 5 cm3) x 2
  • Hydrogen Peroxide (3%)
  • 14 x pH buffer solutions: 1 one buffer solution has to have volume greater than 20 cm3  as each pH experiment will use 5cm3  buffer solution and will be carried out four times.
  • 14 x Test tubes/boiling tubes with rubber bung. Boiling tubes are preferred as they allow larger volumes to boil freely.
  • 56 x 1cm3 cubes of potato.

Safety Precautions

  • Wear goggles at all times; if hydrogen peroxide makes contact with the eyes, it can cause long-term damage. However, the solution I will be using will only be 3% concentration yet it can still pose a risk if used irresponsibly.
  • Wear a laboratory coat, to prevent spillages of hydrogen peroxide onto clothes.
  • Wear gloves to protect skin.
  • Take care to use the razor blade with caution.
  • When using the pH1 and pH14 buffer solutions, care must be taken as they are very hazardous solutions that can cause serious damage to eyes, skin and can sometimes lead to death.
  • Common sense i.e. no running in the laboratory, not eating or drinking e.t.c
  • Wash hands after experiment has been completed.

Method/Procedure (refer to Figure 1 for set up of apparatus)

  1. With the razor blade cut 56 potato cubes with a volume of 1 cm3 (using the ruler) and place them under water in a small tub.
  2. Assemble the apparatus as it is shown in Figure 1.
  3. With the marker pen, mark out on the right hand manometer tube, a line where the position of the meniscus is at and another line 5 cm above it.
  4. Remove the bung from the boiling tube. With one of the 5cm3 syringes, place into the boiling tube 5cm3 of pH1 buffer solution.
  5. Using the forceps add one of the potato cubes from the water tub.
  6. With the other syringe, add 5cm3 of hydrogen peroxide.
  7. Replace the bung immediately. Make sure it gives an airtight seal. Start the stop clock. Agitate the boiling tube to start the reaction. As the reaction commences, oxygen will be produced as the hydrogen peroxide is broken down. The manometer fluid should be pushed down on the left hand side and rise on the right. Time how long it takes for the fluid to rise through the 5cm mark on the right hand side.
  8. Open the clip at the top of the boiling tube. This should result in the manometer fluid returning back to its original position. Close the clip.
  9. Wash out the boiling tube and syringes and repeat this procedure 3 times. Then carry the same thing out with pH levels 2-14, making sure each one is replicated 3 times (total of 4 times).
  10. After the results have been recorded in a table (Figure 2), each pH level’s average time should be calculated.
  11. Finally, plot a graph showing the how the pH level affected the time taken for the manometer fluid to rise 5cm.

Possible factors that would affect reliability of my results:

  • When the Hydrogen peroxide is poured in Oxygen may be lost before bung is placed in. However as long as I do not take too long between the two, this should be minimal.
  • Timing may not be accurate as possible.    

Figure 1: Diagram of Apparatus- This is how the apparatus used for the experiment will be set up.  

Figure 2: Results table- This is how the results will be recorded.

pH level

Time it takes for manometer fluid to rise 5cm/seconds

Average time/seconds

Replicates

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure3: Graph of results.

image00.png

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

(?)
Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Related AS and A Level Science Skills and Knowledge Essays

See our best essays

Related AS and A Level Molecules & Cells essays

  1. The effect of Copper Sulphate concentration on Catalase activity on Hydrogen Peroxide.

    observations, and hence the higher is the mean the higher tends to be SD. For this reason I cannot compare the dispersion of two series of data of different average to compare their dispersion around the mean. To compare the dispersion of two series of data I'd need an adimensional measure.

  2. Investigating the Effect of pH on Enzymes

    This makes up around 30% of starch and the remaining 70% is made up from amylopectin, which is made up from the same alpha glucose but has 1,6 as well as 1.4 glycosidic bonds and this leads to a branched structure.

  1. An Investigation into the Effect of Varying pH on Enzyme Activity

    The colorimeter has two knobs which can be adjusted finely to make the colorimeter read 100% transmission before the cuvettes containing the solutions are added this will be done by using the control prepared at the beginning containing protease and the milk letting it go as clear as possible (it

  2. Investigating the effect of pH on the activity of an enzyme.

    This has to be kept constant through the experiment as it will affect the way the enzyme reacts. This can be kept constant by adding warm water if it goes below required temperature or to lower the temperature to the correct temperature icy water can be added.

  1. What Effect PH has on Enzyme Activity?

    The pH range I will be using will be from 2.2 to 9. The Enzyme, Catalase is present in the blood and hydrogen peroxide has the formula of 2H2O2, which consists of water and oxygen when it is broken down by catalase.

  2. INVESTIGATING THE EFFET OF pH ON THE ACTIVITY OF IMMOBILISEDAMYLASE

    I only have focus on how to control the Temperature and Substrate concentration. Temperature Increasing the temperature in an enzyme controlled reaction will increase the molecular motion and kinetic energy of the enzyme-substrate molecule, thus the molecules move faster and the number of successful collisions is increased, therefore increasing the rate of the reaction.

  1. The effect of pH on the activity of catalase

    of burette infiltrated the air that should not go to the burette). The stop clock was immediately started immediately and every 15 second the change in volume of the water in the burette were measured. This was done for 3minutes and the clock was then stopped.

  2. Investigate how concentration of the enzyme catalase in celery tissue alters the rate of ...

    These problems included lack of suitable equipment, the problem of how often to take recordings, timing, accuracy and reliability and the technicalities of the method. I shall write about how the outcomes of the pilot experiment affected my choices. I was interested in how much gas was produced over 5

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work