• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the effect of sucrose concentration on the conversion into glucose and fructose by invertase

Extracts from this document...

Introduction

Investigating the effect of sucrose concentration on the Conversion into Glucose and Fructose by Invertase Prediction I would expect to find that an increase of sucrose concentration would lower the time taken for the clinistix to turn blue from red, or said in other words, the rate of reaction would increase with an increase of substrate concentration until a certain point where maximum rate of reaction will be reached. Higher concentration of sucrose has more molecules inside it therefore it is more likely that a collision will take place, molecules must collide in order to react. This means that a reaction is more likely to take place in a shorter time, making the rate of reaction quicker until it reaches the maximum rate of reaction, where increase in substrate concentration would not increase the reaction rate because at this point all the active sites are full. (1) Analysing Evidence By looking at my graph showing the Average Time Taken (s) for the clinistix to turn blue against Sucrose concentration (%), I can say that the general trend seems to be that as the sucrose concentration increases, the average time taken for the clinistix to turn blue, decreases. This is shown on my graph by a linear relationship that goes down (negative correlation). But for more detailed interpretation I will concentrate on my second graph, which shows the Rate of Reaction against Sucrose Concentration: Between 0.5% and 1%, there is a big increase in the reaction rate, as concentration is doubled. ...read more.

Middle

* The equipment needed to measure the time and the sucrose solution is not mentioned in the method. * The method does not exactly say, when to place the clinistix in the sucrose solution. * The method used doesn't tell us how many of the sucrose filled test tubes to test at a time, and also how to time the time taken for the clinistix to turn blue. * The method does not suggest how to make sure that the colour level of each clinistix is the same. * Also the method does not mention washing up of the equipment whilst using it and does not account for safety precautions What improvements would I make to the method or equipment Used? If I were asked to repeat the experiment I would change the method and equipment in the following ways: 1. I would include a detailed list of the equipment needed. For example I would say that 2 cm3 pipette is needed to measure the sucrose solution, and also I would say that I would use a stop clock to measure the time taken for a colour change in the clinistix to occur. 2. I would say that I would use a distilled water to prepare the different sucrose concentrations, by mixing it to equal amount of sucrose. ...read more.

Conclusion

To substitute the anomalous result I decided to take the average of the two additional tests and disregard the anomalous. I will use my new result further on in the analysing evidence. The results of the two additional tests were identical (162 sec), giving the same number as an average (162sec), which I believe to be a consistent result. Now by looking at my results I see that at 4% from the same trial the time taken (160sec) is less than the time taken at 8% (162sec). This is not following the main pattern, but it doesn't affect the average results, which are still showing the general trend. The reason for the anomalous result at concentration of 8% might be because of many things. But the main reason for this result is that I wasn't sure if the clinistix had reached the same level of colour, like the other clinistix, so I decided to leave it in for longer, and this is where I made a mistake because the colour didn't change more than it was before. The reason for my uncertainty might have been because I've used different clinistix from the ones I used before. The result at 4 % I don't consider as a big anomaly, as it did not affect the average results. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Affect of sucrose concentration on the rate of respiration.

    Another major change which I am going to make is that the amount of time the experiment is timed for, I am going to measure the amount of carbon dioxide produced for 3 minutes as I think this is more appropriate and when higher masses of sucrose are used the bung is not forced of due the pressure build up.

  2. Investigation of the effect of adding different concentrations of NaCl to an enzyme-substrate (amylase-starch) ...

    wrong substances which would completely alter the observations of the experiment; Risk Assessment For every experiment a risk assessment is needed so that the person involved in carrying out the experiment is aware of all the hazards and the safety precautions to be taken to prevent any accidents.

  1. WHAT EFFECT DOES SUBSTRATE HAVE ON THE RATE OF RESPIRATION IN SACCHAROMYCES CEREVISIAE?

    In general, I believe that, since monosaccharides do not need to be digested before being taken up by the saccharomyces cerevisiae cells, they will cause the saccharomyces cerevisiae cells to respire at an earlier stage and hence would be allowed produce large amounts of CO2 in a given time.

  2. Applied Science

    beat; I multiplied it by three and got 75 beats per minute. This is good because her pulse rate is normal. And also indicate she is not suffering from any fever, fright, haemorrhage or illness. When I record my client pulse rate after 5 minute light exercise, it was 88 beats per minute.

  1. To find out how different concentrations of sucrose solution affect the incipient plasmolysis of ...

    * Don't carry water across the room because if it spills, it could be hazardous and could cause an accident. For instance make sure no water comes into contact with the electronic balance because it's an electrical appliance and if water comes into contact with the socket then it's very

  2. Investigating the Effect of Glucose Concentration On the Rate of Reproduction of Yeast Cells

    which yeast cells reproduce also has an effect on their rate of reproduction. Figure 3 shows the two most commonly studied yeast species, namely budding yeast Saccharomyces cerevisiae (see A and B) and fission yeast Schizosaccharomyces pombe (see C, D, and E).

  1. the effect of substrate concentration on the rate of an anzyme reaction

    The change in rate of reaction for each 10 C rise in temperature is called the temperature coefficient,Q10: Q10=( rate of reaction at X+ 10 C)/( rate of reaction at X C) Each enzyme has an optimum temperature, the rate of reaction starts to decrease as the actie site can

  2. Investigate the factors affecting the rate of breakdown of sucrose by the enzyme sucrase ...

    (Keeping the concentration of sucrase the same) This is because in higher concentrations of sucrose there will be more sucrose to be broken down with the same amount of enzymes so it will take longer for the total breakdown thus the rate is slower.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work