• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5

# Investigating the factors affecting the strength of an electromagnet.

Extracts from this document...

Introduction

• Investigating the factors affecting the strength of an electromagnet
• Background Knowledge:

The theory of magnetism is the only way to explain the process of magnetising an object. In an unmagnetised piece of iron the domains are pointing in numerous directions, which results in them cancelling each other out.

However, a magnetised piece of iron would have all the magnetic domains pointing in all the same direction. This is due to the north poles being at one end and the south poles at the other end. The domains are actually extremely small atomic magnets that line up with each other to form groups, called domains. All iron and steel are made up out of millions of these domains.

The magnetic field is the area around a magnet where it has a magnetic effect. The shape of a magnetic field can be determined by placing a thin layer of iron filings over paper with a bar magnet underneath. When the paper is gently tapped the iron filings act like tiny compasses and point themselves along the lines of flux. The magnetic field of an electromagnet is the same as a bar magnet and it looks like this:

Electricity has a magnetic effect; a wire carrying a current has a magnetic field round it.

Middle

Prediction:

Due to my background knowledge I predict that with the increase in the number of coils, the electromagnet will become stronger. This is because every turn of coil has its own magnetic field. When there are more turns in the same area, the coils magnetic fields overlap and this creates a stronger force.

The increase in current put into the electromagnet will increase its force also. This is because as more power is introduced to each coil, its magnetic field is increased and strengthened, causing the magnetic field to extend its previous limits and be able to attract more paperclips.

• Results:

Conclusion

• Evaluation:

The experiment I chose in my investigation was a good method to use as it effectively illustrated my prediction and was fairly simple to construct and carry out.

The results were very accurate and I had no anomalies, I think this was because I was very careful in trying to maintain one variable only and keeping all other factors constant by using, for instance, an ammeter to observe the current in a lot of accuracy.

The method may not have been entirely accurate as I am not sure that using paperclips to ascertain the electromagnets strength was the most accurate method, this is because it is hard to attach the paperclips once they have reached a certain length although this could have been because the magnetic field only reached so far. I am not sure how the method could be improved to gain more accurate results although possibly using a different material would be advisable.

Despite these queries I am certain that my results firmly support my conclusion as they match up with my background knowledge, prediction and follow a very clear pattern.

Further work could include varying the core used in constructing the electromagnet; I could investigate what makes the electromagnet stronger and weaker in the form of core material.

Lucy Gould                25th February 2002

Mr Wynne, Physics

This student written piece of work is one of many that can be found in our AS and A Level Fields & Forces section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Fields & Forces essays

1. ## How does the number of coils on an electromagnet affect its strength?

A coil of wire is often called a solenoid. The direction of the magnetic field can be described using the right hand rule. The right hand rule states that if you make a fist, when you point your right hand thumb in the direction of the electric flow, the rest of your fingers curl in the direction of the magnetic field.

2. ## To investigate the effect of current on the strength of an electromagnet field.

The field around the solenoid causes the domains in the magnetic materials to line up in the same direction and so add to the magnetic effect. When the current is turned off the solenoid's fields stop, the ions domains return to the original random position and so the ion caused field also stops.

1. ## Investigating a factor affecting the voltage output of a transformer.

curves until it levels off at around V1=6.3V, where increasing V1 doesn't appear to increase V2. My results are without any anomalies, and show a trend that was anticipated. All replicates were very consistent, showing that my results are reliable.

2. ## Investigate the factors affecting the induced e.m.f. in a coil due to the changing ...

3 Precautions 1. Increase the alternating current gently from zero. Otherwise, the a.c. ammeter would be over-deflected which may cause damage to the ammeter. 2. The ends of PVC covered copper wire should be twisted and kept as far away from the solenoid as possible.

1. ## Investigation to determine the viscosity of glycerol.

Buoyancy: "The upthrust is equal to the weight of the displaced fluid. "8 Viscous force: "Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction."9 Upthrust and viscosity balances the weight of the sphere and when this happens the object is said to have reached terminal velocity.

2. ## To see how the number of coils on an electromagnet affect its strength.

The North Pole has the current shape going in an 'N' shaped way, and the South Pole has the current going in an 'S' shaped way. In an electromagnet, the same rules apply to every experiment. "The more turns of wires there are, the stronger the magnetic field, current and electromagnet".

1. ## My aim is to investigate how to make electromagnets stronger to increase the amount ...

The websites I went onto were: * www.s-coolrevision.com * www.GCSEbitesize.co.uk I also looked at books, which we use during the class to look up on the topic, and to see if they had any diagrams that I could have included with my coursework.

2. ## Investigation into the factors affecting the strength of electromagnets - Planning Experimental Procedures.

Then the power pack will be turned on and set at the correct voltage of 2V. Then I will hold the EM two centimetres above the container holding the paper clips. I will then remove the paperclips onto a blank sheet of paper and switch of the power supply.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to