• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19

Investigating the factors that affect the conductance of a solution

Extracts from this document...

Introduction

Investigating the factors that affect the conductance of different solutions

Introduction

Just as metallic conductors have a resistance when a current is passed through them so do ionic solutions. However, when dealing with solution it is more convenient to look at its conductance, G, rather than its resistance and is simply the reciprocal of the resistance, R. The unit of measurement is siemens,Ω-1 G=1/R. We can also work the conductance from knowing the current and the voltage G=I/V.

The ability of a solution to conduce electricity is due to the dissociation of the compounds presence into its constituent ions. Theses ions play the same role, in solutions, as electrons do in metallic conductors, they transport the electric charge from one electrode to the other.

Aim

To investigate how certain factors affect the conductance of a solution.

The factors I have considered investigating, that may have an affect on the conductances of a solution are:

  • different concentrations of the solution (0.5M, 1M, 1.5M, 2M, 2.5M & 3M)
  • the temperature of the solution (ranging between 20°C to 90°C)
  • different solutions (Sodium Chloride& Sulphuric Acid)
  • different electrodes (Carbon & Copper)

Summary

In this investigation I analysed certain factors that I thought might affect the conductance of a solution i.e. concentration, temperature, different solutions, different electrodes. Before carrying out my actual experiment I carried out a trial to see whether they’re any areas for improvement. After inputting the improvements I carried the actual experiment.

...read more.

Middle

2.1

2.1

0.258

0.255

0.121

2.1

0.247

2.1

0.259

1M

2.1

2.1

0.361

0.365

0.174

2.1

0.370

2.0

0.365

1.5M

1.7

1.7

0.629

0.628

0.370

1.7

0.622

1.7

0.634

2M

1.5

1.5

1.034

1.048

0.699

1.5

1.050

1.5

1.059

2.5M

1.5

1.4

1.105

1.109

0.792

1.4

1.111

1.4

1.111

3M

1.4

1.3

1.200

1.205

0.927

1.3

1.214

1.3

1.200

Temperature

1 M Sodium Chloride (Carbon electrode)

Temperature °C

Voltage

(Volts)

Average Voltage

Current

 (Amps)  

Average

Current (3d.p)

Conductance (S)

(3s.f)

21.9

2.1

2.1

0.199

0.198

0.094

2.1

0.195

2.1

0.199

33.3

2.1

2.1

0.208

0.208

0.099

2.1

0.209

2.1

0.207

43.1

2.1

2.1

0.229

0.227

0.108

2.1

0.226

2.1

0.227

53.8

1.9

1.9

0.269

0.269

0.142

1.9

0.268

1.9

0.269

63.6

1.9

1.9

0.431

0.433

0.228

1.9

0.435

1.9

0.433

73.9

1.9

1.9

0.466

0.466

0.245

1.9

0.466

1.9

0.466

83.7

1.8

1.8

0.512

0.513

0.285

1.8

0.513

1.8

0.515

1 M Sulphuric acid (Carbon electrode)

Temperature °C

Voltage

(Volts)

Average Voltage

Current

 (Amps)  

Average

Current (3d.p)

Conductance (S)

(3s.f)

21.9

1.7

1.7

0.697

0.697

0.410

1.7

0.697

1.7

0.698

33.3

1.7

1.7

0.745

0.745

0.438

1.7

0.747

1.7

0.744

43.1

1.7

1.7

0.793

0.794

0.467

1.7

0.793

1.7

0.795

53.8

1.7

1.7

0.841

0.842

0.495

1.7

0.843

1.7

0.843

63.6

1.7

1.7

0.877

0.880

0.518

1.7

0.879

1.7

0.883

73.9

1.6

1.6

0.909

0.909

0.568

1.6

0.909

1.6

        0.909

83.4

1.6

1.6

0.932

0.934

0.584

1.6

0.935

1.6

0.934

1 M Sodium Chloride (Copper electrode)

Temperature °C

Voltage

(Volts)

Average Voltage

Current

 (Amps)  

Average

Current (3d.p)

Conductance (S)

(3s.

...read more.

Conclusion

Unlike the other graph this graph has a different line. Unlike the other slopes this one increases straight from the start. It has steeper gradient, which shows that it has a faster rate.

Temperatures

 Graph Five (1 M Sodium Chloride (Carbon electrode))

This graph again has a similar slope. As the temperature increases the conductance is also increasing. In the graph until about 40°C we get a straight line with a very straight gradient. After that the line increases monotonically with an upward slope. I think the reason we get a curve like this is because the conductance   readings are very close together.

Graph Six, Seven and eight

The shape of curves these graphs are similar. As the concentration increases the conductance also increases. They are all increasing at a steady rate. They also have an upward slope.

image04.png

Conclusion:

What effect does different concentrations of the solution (0.5M, 1M, 1.5M, 2M, 2.5M & 3M) have on the conductance of a solution?

°°

image05.png

We started this coursework towards the start of July. I spent the first week doing research and gathering information that could help me with my coursework. I used the next few I lessons to write up my plan and decide what apparatus will needed. After that I spent the next week carrying out a trial experiment for all the variables concerned. It took me between 6-7 lessons. I spent the following two lessons to input my modifications and to alter my plan.

Once everything was finalised I spent the about 6-10 lessons carrying out the actual experiment. Finally I spent the rest of the time writing up the results.

  • http://www.asguru.com

image06.png

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Thermistor Coursework

    The voltmeter I am using to take my results is digital and can read the potential difference to two decimal places. The voltmeter could be able to detect a potential difference change to three decimal places, but I think that the sensor would be more sensitive than necessary for the application that I am designing it for.

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    been 3 degrees higher the percentage error initially caused by this was 3x100/36 = 8%. Looking at results 1 I decided that there was no drop in temperature once the heating filament was switched off and therefore no heat was being lost during the experiment, there was therefore no need

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    Theses conditions we will see now. The tables and the graphs shown will be filled up after the experiment has been carried out. We will have to carry out the experiment for different materials to note down the readings on the voltmeter and ammeter.

  2. I am going to investigate what the resistivity is of a pencil lead. ...

    such as the voltmeter and the ruler - the intervals cause error. To account for this fact the percentage error is worked out. Meter Type Range in Experiment Largest Error % Error For A Mid-range Reading Ammeter 0-4A 0.01A 1.83 Voltmeter 1-5V 0.1V 18.3 Ruler 0-500mm 1mm 0.2 Micrometer 0-0.69mm

  1. physics sensor coursework

    �100 Error min = 2.92% Analysis Looking at the graph, we can see a very definite relationship between the light intensity and resistance of the LDR. This is that as the light intensity increases, the resistance of the LDR will decrease.

  2. Assess how changing the electric current in the electrolysis of acidified water affects the ...

    on the graph of current Vs volume of H2 gas produced = 14.4, C = the value at which the straight line crosses the vertical (y) axis = 0 Thus: Y = 14.4X This means that, in general, the volume of H2 gas produced during electrolysis lasting for 2 minutes is equal to the current multiplied by 14.4.

  1. Physics coursework

    To decrease the temperature of the water that the thermistor will be in. Bunsen burner To heat the water the thermistor will be in. Thermometer To know when to take the resistance reading and to measure the temperature of the water.

  2. Characteristics of Ohmic and non-Ohmic Conductors.

    I will be using distilled water, to ensure that there are no ions in the water to conduct electricity, even if there is a fault in the insulation. The beaker will be placed over a Bunsen burner, and a thermometer will be suspended into the water, to check the temperature of the water.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work