• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Rates of Reaction for Halogenoalkanes

Extracts from this document...

Introduction

Investigating the Rates of Reaction for Halogenoalkanes Aim The aim of this experiment is to show how the rate of reaction of the halogenoalkanes changes in respect to the C-X bond, where the C is the carbon and the X is the halogen. This will occur through a nucleophilic attack. The halogenoalkanes undergo hydrolysis according to the following equation: CnH2n+1X + OH� CnH2n+1OH + X� Plan The plan for this experiment is to take three different halogenoalkanes and add a nucleophile to each of the halogenoalkanes record and compare my observations for each halogenoalkane experiment. In the experiment, the number of carbons in the halogenoalkene will not vary. The carbon compound I am going to use will be halogen butane. The nucleophile I am going to use is hydroxide ion (OH�). In this experiment I will not use the halogen fluorine because of the strong bond it forms with carbon. ...read more.

Middle

According to bond enthalpy the reverse is true. Bond enthalpy shows us that C-I bond is the most reactive and the C-F bond is lest reactive. This is due to the bond energy between the atoms. Bond energy is the average standard molar enthalpy changes for the breaking of a mole of bonds in a gaseous molecule to from gaseous atoms. Bond energies indicate the strength of the forces holding together atoms in a covalent molecule. Bond energy is increased with the number of shared electron pairs. So C-I bond has bond energy of 228 kJ mol-1, which is more reactive because the bond is weak. Compared to C-F, which has bond energy of 467 KJ mol-1, which is a strong bond. C-H - 413 KJ mol-1 C-F - 485 KJ mol-1 C-Cl - 328 KJ mol-1 C-Br - 276 KJ mol-1 C-I - 240 KJ mol-1 On the basis of bond enthalpies I would predict C-I to be the fastest reaction followed by C-Br, then C-Cl. ...read more.

Conclusion

(avoid inhaling halogenoalkanes vapour as it is harmful and irritating) 5. Place test tube A, B and C in the same hot water beaker. 6. Measure 2 cm3 of silver nitrate solution (0.01 mol dm-3) and pour it into 3 different test tubes. 7. Place them all in the same hot water beaker 8. Leave all the six test tubes in the beaker for 15 minutes to maintain the same temperature as the beaker 9. Extract the test tubes out of the beaker and add the 2 cm3 of silver nitrate solution to each test tube (A, B and C) quickly and in the same time. 10. Shake the test tube with their content, and leave the test tubes for 10 minutes, then detect how long silver halides precipitate takes to form. My method would work because of the equipment I used for the experiment. Like the measuring cylinder, which will ensure that, the equal and right amounts are being used in the experiment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Deducing the quantity of acid in a solution

    5 star(s)

    are reading the exact graduation mark, or otherwise, our titres won't be concordant. So, we could be either doing concordant titres thinking that they are not or doing non concordant ones reading a concordant one. This would affect the results when calculating the average titre to get the final concentration.

  2. effects Concentration and Temperature on the Rate of Reaction

    of X2Y3 consists of 2n3m grams of X2Y3 dissolved in enough water to make one litre of solution. Once the molecular weight of a chemical is known, the weight (in grams) of chemical to dissolve in water for a molar solution less than 1M is can be calculated using the following formula: grams = (desired molarity of solution)

  1. Lab report Determination of Enthalpy Change of Neutralization

    They can completely dissociate in the water, so the no of mole of H+ and OH- in the solution increases; as a result, the enthalpy changes of neutralization are relatively higher. In addition, there is no energy that is needed for the ionization of the hydrogen and hydroxide ions.

  2. Energy and Rates Analysis of Chemical Reactions

    When the magnesium in the second solution is completely consumed stop the second watch, and when the last one has no visible magnesium left, stop the final watch. Record the three times. 13. Again, dispose of the products in the drain of a sink, and wash all apparatus.

  1. Cube compressive strength test

    Types of failure other than the above figures are regarded as unsatisfactory and indicate a probable fault in the testing machine. Unsatisfactory failure Results of Cube (1) Front side Right side Back side Left side Results of Cube (2) Front side Right side Back side Left side Results of Cube (3)

  2. Aim To study the effect of concentration of iodide ion ...

    was colourless. As solutions of both test tube A and C were added into the conical flask, the mixture remained colourless. After 5 drops of starch solution were added, the mixture resembled rice water. After solution in test tube B was added into the flask, there was no initial reaction observed.

  1. Oxidation of ethanol

    * Ethanol - Ethanol irritates the eyes. Inhalation of high concentration of vapour may cause irritation of the eyes and respiratory tract. The substance may cause effects on the central nervous system. In contact with skin may produce dry skin. In order to prevent those, I decided to wear protective gloves and safety goggles during the experiment.

  2. The Chemistry oh Phosphorous

    As well as this, it has a key role within the DNA, so the genetic make-up of plants. There is often a deficiency of phosphorus in the soil, which is recognized by weak stems and leaves, and sometimes purple pigmentation to the steam and leaves.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work