• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Volume of a Drop

Extracts from this document...

Introduction

IB Chemistry HL Investigating the Volume of a Drop Criteria: - Planning (a) - Planning (b) - Data Collection - Data Processing and Presentation - Conclusion and evaluation Laura Hu Lab Partner: Tu Tai Kuong Started January 20, 07 Completed January 27, 07 5 pages + raw data Planning (a) and (b) Objective: To accurately measure the volume of a drop of water and saturated salt water under two set temperatures. Hypothesis: Since the mass of a substance changes as the temperature changes, we believe that the volume of a liquid would change as temperature changes. This is because we know that density is equal to mass divided by volume. Density is different depending on its temperature and mass is constant. Therefore, with a difference in temperature, there will be a difference in volume. The second thing we predict is that salt water will have a smaller volume per drop than water. This is because the density of salt water and the mass of salt water will be greater than normal water due to the added salt in the water. This will make it heavier than regular water.. Independent Variables: Forces affecting the drop as it is about to come down (gravity and shaking of hand) Where to drop lands (may land on the sides of the beaker, making the drop stick to the sides instead of dropping to the bottom) Water evaporation Atmospheric pressure Dropping device type (diameter of the place where the drop will come out) ...read more.

Middle

ml 0.11 ml 0.011 ml 2.41 ml 2.60 ml 0.19 ml 0.019 ml 2.60 ml 2.71 ml 0.11 ml 0.011 ml Average volume per drop: (0.012+0.018+0.011+0.019+0.011) / 5 = 0.0142 ml Rounded: 0.014 ml Uncertainty: + 0.02 / 10 = + 0.002ml Volume per drop = 0.012ml to 0.016ml Warm bottled water at 38 + 0.5 degrees Celsius Star Volume End Volume Difference Volume per Drop 2.00 ml 2.11 ml 0.11 ml 0.011 ml 2.10 ml 2.30 ml 0.20 ml 0.020 ml 2.30 ml 2.45 ml 0.15 ml 0.015 ml 2.45 ml 2.60 ml 0.15 ml 0.015 ml 2.60 ml 2.81 ml 0.21 ml 0.015 ml Average volume per drop: (0.011+0.020+0.015+0.015+0.015) / 5 = 0.0152 ml 3 Rounded: 0.015ml Uncertainty: + 0.02 / 10 = + 0.002ml Volume per drop = 0.013ml to 0.017ml Warm saturated salt water at 38 + 0.5 degrees Celsius Star Volume End Volume Difference Volume per Drop 2.00 ml 2.10 ml 0.10 ml 0.010 ml 2.10 ml 2.31 ml 0.21 ml 0.021 ml 2.21 ml 2.34 ml 0.13 ml 0.013 ml 2.34 ml 2.49 ml 0.15 ml 0.015 ml 2.60 ml 2.71 ml 0.11 ml 0.011 ml Average volume per drop: (0.010+0.021+0.013+0.015+0.011) / 5 = 0.014ml Uncertainty: + 0.02 / 10 = + 0.002ml Volume per drop = 0.012ml to 0.016ml Conclusion and Evaluation Our experiment tested two variables (the type of liquid and the temperature) and how they affected the volume of a drop. ...read more.

Conclusion

8. We couldn't make sure that NO heat would be lost or gained when we took the cold water from out of the fridge or when we took it out of the microwave. We insulated the water with 2 Styrofoam cups, but even that couldn't make sure that no heat would be gained or lost. Also, water would lose or gain heat as we are dropping each drop, or when it is sitting in the graduated cylinder, waiting to be measured and recorded. For this reason, each drop may be a little bigger or smaller in volume than our recorded values. 9. We tried to control the saltiness of the salt water by making it saturated salt water. To do this, we put much more salt than is needed to saturate the water, into the container. We stirred until no more salt was dissolved, or so it seemed. We couldn't be absolutely sure that the water was saturated because maybe the salt was just dissolving more slowly, but it was still being dissolved. 10. When we were heating up the water inside salt water, we still had a little bit of salt left on the bottom.. This may have caused a problem because when we wanted saturated water, we wanted it saturated at 0.5 degrees. After we heat the salt water, it wouldn't be saturated anymore, so more salt would be able to be dissolved into the solution. This means that the salt water after getting heated was slightly saltier than before it was heated. 5 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Chemistry planning exercise

    V= volume of solution (dm 3) c= concentration of solution (mol dm-3) The volume of solution to be made will be 250 cm3 as this will give me enough solution to complete the desired amount of titrations with but not too much as to have a surplus.

  2. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    ions is equal to . CONCLUSION 5: (Equation 3.7.3) 3.8 - Suggesting a Reaction Mechanism As explained on page 9, the rate equation can suggest a possible rate determining step for a reaction.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work