• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# Investigation into Hookes Law - investigate the effect of mass on the extension of a spring.

Extracts from this document...

Introduction

Physics Coursework Investigation into Hookes Law Aim: To investigate the effect of mass on the extension of a spring. Prediction: My prediction is that, as you increase the mass, the extension of the spring will also increase. E.g. the double the mass, the double the extension. So I am saying that the results should be near enough consistent while increasing in the extension until I reach the end of the experiment. I will now support this prediction with some scientific knowledge. Hookes law is when forces are applied to a solid object which can result in extension. Hookes law is also able to predict how a spring (or other stretchable object) when force is applied to it. So this will show extension into the spring after the force is applied. Equipment: The equipment which will be required for the testing of Hookes Law are: * Clamp and Stand * Weights 50grams each * A measuring apparatus (preferable a 1 metre ruler) * Spring Diagram: Fair Test: I will try to keep this a fair test by only investigating 1 variable. ...read more.

Middle

I must not overload the spring and apply to much pressure on to the spring and I will be careful in the way I place the weights on to the spring. Method: First of all in this experiment I will need to apply all the equipment correctly and set it up in the way it is shown in the diagram. Then I will measure how big the spring is when there is no force applied on to the spring, then after that we take the measurement of the spring and then I will go up in 50 grams until I reach 400grams of weight on to the spring and the measurements will be recorded into centimetres of the extension of the spring. Results Table: Mass (g) 1st reading (cm) 2nd reading (cm) 3rd reading (cm) Average (cm) Extension (cm) 0 2 2 2 2 0 50 2.6 2.5 2.4 2.5 0.5 100 4.2 4.3 4.2 4.2 2.2 150 6.2 6.3 6.3 6.3 4.3 200 8.3 8 8.1 8.1 6.1 250 9.9 9.8 9.7 9.8 7.8 300 11.9 11.8 11.9 11.9 9.9 350 13.9 13.9 13.8 13.9 11.9 400 16 16.3 16 16.1 14.1 Analysis ...read more.

Conclusion

This could of all had a major effect on the final outcome of the results. Due to my foreknowledge on hookes law it was easy to roughly predict what the results were going to be. This shows my scientific knowledge was correct about on my final outcome by saying that the extension will get bigger when force is applied. Evaluation: My experiment managed to produce some very good results even though my prediction was only half right but the results was supported well by my scientific knowledge. This helped me produce a graph of a good standard with all points near to the line of best fit. The results could have been a tiny bit inaccurate because of the spring making small movement when I measured the extension. If I was to do this experiment again I would give myself more time and I won't just do this in 1 day I will come back another day and repeat it again so my results will be more accurate. Overall I think this investigation was a success because I come out of it with successful results and a well attained graph. Charlie Taylor-Hill ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Waves & Cosmology essays

1. ## I am investigating the relationship between extension and load, therefore testing Hooke's Law.

Weights were increased systematically in 0.5 N (50g). My method of experimentation will be to use a retort stand and boss clamp to suspend a spring from. A second boss clamp will hold in place a centimetre ruler starting from the bottom of the spring to measure extension in cm.

2. ## The aim of this investigation is to examine the effect on the spring constant ...

and 'real world' factors which always effect any experiment. As was predicted it can be seen that when springs were placed in a series combination, the combined spring constant was half that of a single spring, however when springs were placed in a parallel combination, the combined spring constant was double that of a single spring of identical type.

1. ## Investigating Hooke's Law

the short spring because, when I examined my graphs and compared the results of the short spring against the long spring, I found out that the gap between the extensions on the long spring was larger than the gap for the short spring.

2. ## Physics Investigation on Hook's Law.

Method: My method of experimentation will be to use a clamp stand and boss clamp to suspend a spring from. A second boss clamp will hold in place a metre rule starting from the bottom of the spring to measure extension in mm.

1. ## An Investigation into Hooke's Law - The aim of this experiment is to find ...

* I will check the spring before each reading to ensure that it has not been permanently deformed, and if it has, I will restart the experiment with a new spring and make sure I don't use the same amount of weight as I had previously.

2. ## Stretching Springs/Hookes Law.

The pull in the spring, which supports the mass, is a tension. 2) The force that the object exerts on the spring is called the load. There is also gravity acting on the spring. Introduction Robert Hooke was an English scientist and was best known for his study of elasticity.

1. ## Investigating Hooke's Law into thin wires.

As stated in Hooke's Law. PLAN I am going to test weather Hooke's Law applies to thin wire. This is going to be done by doing an experiment where different weights/forces are added to a piece of fishing wire. The thickness of the wire will be kept at a constant and the sole variable of the experiment will be the force that will be added.

2. ## An experiment to investigate and determine how rubber behaves when tension forces are applied ...

I would also create another graph to show load vs. tension. This would show the relationship in how the load would affect the tension and so this would be useful as I could again use it in my analysis to help me explain my predictions.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to