• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigation into the factors affecting the current through an electrolysis cell

Extracts from this document...

Introduction

Investigation into the factors affecting the current through an electrolysis cell

Having looked at methods of mineral extraction we saw that one method involves electrolysis. To control the products of electrolysis we may need to control the speed of the reaction. A measure of this is the current of flow of electricity.

Preliminary Work:

We conducted preliminary tests in order to become familiar to the method we were to use in the final experiment. The results we gathered gave us an idea on the results and their range to enable us to draw appropriate graphs with correct scales. Equipment was chosen and we were to use the same in our main tests. So the preliminary tests would give us time to figure how to work them. This is done so the main experiment could be set up and completed successfully.

Possible Variables:

From the preliminary tests and results we found a number of possible variables we could have used to investigate the factors affecting the current through an electrolysis cell. These are:

  • The applied voltage
  • Concentration
  • Amount
  • Type of electrode
  • Size of electrode
  • Distance between electrodes

...read more.

Middle

Fig.1 shows that there are a greater amount of electrons at the anode and cathode when the voltage is higher. The greater amount of electrons, the greater amount of current.

Method:

Apparatus:

  • Electrolysis cell
  • Power pack (max: 12v)
  • Voltmeter
  • Ammeter
  • Clamp Stands
  • Leads

Diagram:

  • Set up apparatus as above, making sure that the voltmeter is connected in parallel, and the ammeter in series
  • Fill electrolysis cell with 100ml of potassium nitrate
  • Set power pack to certain voltage
  • Turn power on for short amount of time and note the real voltage and current
  • For better results, replace potassium nitrate solution after every reading
  • Do this for each voltage listed in the variables section
  • Repeat three times and take averages for best results
...read more.

Conclusion

Fig.2 shows what I predicted in my prediction. When the voltage is low, the current is low, when the voltage is high; the current is proportionally high, taking into account the resistance.

Evaluation:

The experiment was conducted well and fairly. All measurements were taken accurately using a syringe or measuring cylinder.

Although the results were reasonably accurate, and they supported what I said in my prediction, there was one slight anomaly. As you can see in my graph, the current apparently starts to rise at around 2.40/2.5V. This is not correct because voltage and current are proportional, and this means that they should both start at 0 in a graph. The most probable reason for this mishap is the accuracy of the ammeter, the readings were probably two small for it to read, or they were jumping around a lot, and this results in incorrect readings.

If I were to repeat this experiment, I would obtain a more accurate ammeter, and also use a rheostat, so I can achieve rounded voltages, that are the same for every repeat. This would make the experiment fairer, and the results more accurate.

Philip Crockatt

Investigation into the factors affecting the current through an electrolysis cell        -  -

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Marked by a teacher

    Internal Resistance of a cell

    5 star(s)

    Graphing the results gained after the experiment of new and old battery 5) Identified the gradient and the y- intercept of the best fit line for each set of the data And for the values of the currents (independent variables)

  2. Assess how changing the electric current in the electrolysis of acidified water affects the ...

    on the graph of current Vs volume of H2 gas produced = 14.4, C = the value at which the straight line crosses the vertical (y) axis = 0 Thus: Y = 14.4X This means that, in general, the volume of H2 gas produced during electrolysis lasting for 2 minutes is equal to the current multiplied by 14.4.

  1. The electrolysis of copper from copper sulphate solution

    However, if any spills make their way on to my skin then I would be sure to wash it off with water at the nearest tap. 6. I must make sure not to run to get anything or to hurry to wash off any solution, he risks of any

  2. A2 Viscosity investigation

    10.8x10 +or-0.09x10 149x10 5.55 x10 60 x10 74.65 72.34 85.13 7.75x10 +or- 0.70x10 Anomalous results circled and not included in averages. To find the velocity I have used the equation v= (where v= velocity, s= distance and t = time).

  1. Investigating how temperature affects the resistance in a wire

    The linear treadline is used so as to help identify patterns in the results, which look very accurate already due to the clear pattern they follow. The results are shown in graph 5, along with the treadlines and error bars discussed above.

  2. Relationship between the current and voltage.

    I believe this, as no light will be given off, even though there is some resistance in the circuit. This is, as the bulb needs a certain amount of activation energy. Before it lights up. Once the bulb has been lit up, there will be a steep gradient for a while, and then the gradient will decrease.

  1. How does the mass of copper plated in the electrolysis of copper sulphate solution ...

    First of all, I have the a small current to start of with and so I can use the results of this value and compare it with the larger value(1 amp) and see what the kind of affect a small current has on the mass changes of the electrodes.

  2. Investigate the maximum power output of a solar cell (photovoltaic cell).

    Height (cm) Current (ma) Current (ma) Current (ma) Av. current (ma) Av. current (a) Power (w) Power (mw) 50 0.3 0.2 0.2 0.2 0.0002 0.0000004 0.0004 49 0.3 0.3 0.2 0.3 0.0003 0.0000009 0.0009 48 0.3 0.3 0.2 0.3 0.0003 0.0000009 0.0009 47 0.3 0.3 0.2 0.3 0.0003 0.0000009 0.0009

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work