• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

Investigation of the effect of adding different concentrations of NaCl to an enzyme-substrate (amylase-starch) solution.

Extracts from this document...


BIOLOGY Coursework - Investigation of the effect of adding different concentrations of NaCl to an enzyme-substrate (amylase-starch) solution. Investigation The objective of the assessed practical is to investigate the effect of different concentrations of sodium chloride on the rate of hydrolysis of starch using the enzyme diastase, or more commonly known as amylase. Therefore, the principal behind the investigation is to look into different factors that affect the rate of enzyme activity. Background Information Starch Starch is made up of combinations of two different polymers of alpha glucose, amylose and amylopectin. Amylose is composed of approximately 300 glucose units connected by alpha 1,4 glycosidic bonds. Amylopectin is a branched chain composed of approximately 1500 glucose subunits, which are connected by the cross linking of alpha 1,4 glycosidic bond chains by alpha 1,6 glycosidic bonds. The chains branching off the CH2OH on alpha glucose molecules cause the polysaccharide to take up a helical structure. The diagrams below represent the points stated: Amylose - alpha glucose molecules connected by alpha 1,4 glycosidic links Amylopectin - branched chain of alpha glucose molecules joined by 1,4 and 1,6 glycosidic cross links From the diagrams above it is apparent that there are very few free ends on a starch molecule as a whole, this would therefore simply mean that there are not many regions on the molecule where hydrolysis by amylase could commence. An easy method of testing whether starch is present is to add 2cm3 of the solution that is to be tested into a test tube. Add 2 drops of the solution into a spotting tile using a pipette. Add a drop of iodine solution on to the same spot on the tile. If starch is present the solution should change in colour to blue-black. The principle behind this experiment is due to the ability of iodine to bind to the centre of the starch helix, which forms a starch-iodine complex. ...read more.


19. Once the desired colour is reached then stop the timer and record the time. 20. Repeat steps 11-20 for each of the different concentrations of NaCl. 21. Repeat all the steps for each run of the experiment 3 times to obtain a reliable and dependable average set of results. Pilot Experiment For my preliminary work I will plan a pilot experiment first as a trial run. This will help me to confirm whether my planned method and choice of apparatus is appropriate and works effectively to produce reliable results. Also, it will allow me to make any amendments to the planned method if there are any significant inaccuracies, before the actual investigation is carried out. Trial Run Table to show change in time taken for an iodine solution to change the colour from blue-black into orange after single drops of a starch-amylase solution, containing different concentrations of sodium chloride, are added at 60 second intervals. Amount of NaCl in solution (cm�) Number of iodine drops added at 60 second intervals Time taken for solution to change colour from orange to blue/black (seconds) 0.0 6 540.0 1.0 1 60.5 0.8 1 60.0 0.6 2 119.5 0.4 3 360.5 0.2 4 420.0 The errors in the plan are shown in the table by the fact that all the recordings are very close together and there is very little distinguishing between them. This would lead to inaccurate and reliable results, as it would imply that both 1 cm� and 0.8 cm� concentrations of NaCl produce the same time reading. This would also not show how far apart the actual readings were in seconds as both readings are in the first 60 seconds bracket. Justifying Changes to Method It would be appropriate to analyze the results obtained above before justifying the changes made to the plan. The results above are very close together and the reading show that the reactions occurred far too quickly; therefore it would be appropriate to reduce the amount of certain substances used in the solution. ...read more.


Another factor may have been that the tested solution may not have had chanced to mix, therefore the amylase would take longer to break down the starch due to lack of efficient supply of Na+ ion cofactors. However, the inconsistency described above is only slight and do not generally affecting the overall trends as shown by the graphs. Therefore it can be concluded that there was only one anomalous point. Therefore I can conclude that my results are very reliable, due to the fact that all the three different runs of the same experiment produced the same trend of results, as they were all very close together, in terms of values, apart from the value described in the above. This is also shown in Graph 1. I think that through the evaluation of the results that the conclusions, accuracy, reliability and validity of the experiment are very much secure. None of the anomalous points had a major effect on the trends. The results were accurate to one significant figure because it was possible to time the colour change from orange to blue black to the nearest 0.5 seconds. The results were reliable because I repeated the experiment four times and they produced a trend on the graph. The results did support my hypothesis. By looking at my t test results it has statistically proven that the experiments conducted were not due to chance. Apart from, when comparing 0.8mol concentration of NaCl with 0.6mol concentration of NaCl and 0.6mol concentration of NaCl with 0.4 concentration of NaCl the null hypothesis was not rejected this could have been due to a number of reasons. But I believe it was mainly because of some larger drops of water in the spotting tiles for these particular runs, as this would allow the iodine to change colour a lot easier than with the usual amount. This explanation is more feasible than stating that it was caused by inaccurate measuring on syringes as a pipette is not very accurate because there are no specified measurements on it. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    effect of concentration of copper sulphate on the action of amylase to break down ...

    4 star(s)

    around the iodine molecules, the blue-black colour will then start to disappear. I can exploit this characteristic in my experiment to dertermine the end point. Using a colorimeter to monitor the light absorbance, I can determine the rate of reaction as it is the same as how quickly the solution decolourises.

  2. Marked by a teacher

    How does the concentration of enzymes affect the breakdown of starch by a-amylase in ...

    4 star(s)

    * Balance (accurate to 2d.p.) * Starch agar plates, pre-prepared (filled to a depth of 6mm, using 1% starch agar) * Cork borer, ? 5mm * Vernier calipers (accurate to 0.1mm, ?0.05mm error) * Stirring rod * Iodine solution of concentration 0.01M (used to test for rate of breakdown of starch)

  1. Marked by a teacher

    How Does the pH of a Solution Affect the Rate of Starch Digestion By ...

    3 star(s)

    active site so they will not be able to work properly and catalyse chemical reactions properly, this can lead to malnutrition in living organisms. pH can affect the enzymes by deforming the enzyme in such a way that the chemical properties of the enzyme are changed.

  2. To find out how different concentrations of sucrose solution affect the incipient plasmolysis of ...

    Collect the two pipettes and label one as sucrose and the other as water so there's total accuracy and precision. 5) Now using the two pipettes the sucrose pipette and the water pipette make the different sucrose solutions by the process dilution, the table above shows the exact amount

  1. An Investigation Into the Effect of Substrate Concentration On the Rate of Enzyme Activity.

    The test tubes were left in the heat block for 5 minutes to allow them to reach the correct temperature. Then a bead was placed into the hydrogen peroxide and left to sink to the bottom of the test tube.

  2. Investigating the effect of temperature On the action of Amylase on Starch.

    This is the peak of reactivity between the Amylase and the Starch. At 50 C the Amylase would have begun to denature, it takes longer for the Amylase to break down all of the Starch. The rate of reaction will have slowed down drastically.

  1. How does pH affect the Denaturation of enzymes Starch and Amylase.

    shall stay the same. Obviously the time shall change only as a result of the varying length in rate of reaction Apparatus 9 boiling tubes pH sensor Measuring cylinder 50 ml 1% starch 50ml 1% amylase Iodine solution Pipette Stopwatch Pilot study A pilot study will be carried out to

  2. How differing concentrations of enzymes (in this experiment the enzyme amylase was used) affect ...

    The time taken for the starch to be broken down was almost the same in both the trials. When the first drop of amylase and starch mixture was dropped on the iodine the color changed and turned blackish. This signaled that there was starch left in the mixture.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work