• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

ion exchange

Extracts from this document...

Introduction

An experiment to purify contaminated water using ion exchange Introduction The aim of the experiment is to prove that there are positively charged copper ions (cations) contaminating a solution, which will be passed through a column of ion resin beads, with the product being pure water (or at least a less contaminated sample). Ion resin is made up of tiny beads, about 0.3-1.2mm in diameter. It's an insoluble substance, with a highly developed structure of pores - which can either trap of release ions. This is known as ion exchange, a process of exchanging ions from two substances, an insoluble solid and a solution. An example of this process is softening hard water and water purification. When a solid is comes into contact with a solution containing ions, equilibrium is formed - meaning that the reaction can go either way, it's a reversible reaction. Ion exchange occurs when the reaction of two compounds (or elements) exchange their ions to form a new structure in a solution. An ion is a charged atom/molecule, which has either lost or gained an electron, therefore giving it a positive or negative charge. ...read more.

Middle

4. The ion exchange tube was packed with the resin, using the flat end of a glass rod, ensuring that a 2cm gap was left at the top. This was then attached to a boss and clamp stand, with a 150cm� beaker placed under the ion exchange tube. 5. Next, the resin was washed with 20cm� of Nitric acid, which was the measured into a 50cm� beaker and was then slowly poured into the ion exchange tube. 6. 30cm� of distilled water was then passed through the tube, washing the resin. 7. Then, 5cm� of the left over Copper Sulphate and Lead Nitrate solution was poured into the ion exchange tube, removing any of the distilled water that may still be on the resin. 8. Another boss and clamp stand was taken, and a clean test tube was placed under the ion exchange tube, so that its tip was resting on the top of the clean tube. 9. The remaining Copper Sulphate and Lead Nitrate solution was slowly poured through the resin, the filtered solution product being caught in the clean test tube. ...read more.

Conclusion

The reasons, to suspect that the water was contaminated, were that it was coloured. At the first test at the start involving the sodium hydroxide, the observations recorded were that it was gelatinous - with a blue precipitate. The gelatinous product in the test tube shows that copper is present. The white product is lead sulphate. The following equation shows that they had 'swapped partners': sodium + copper � sodium + sulphate. From the results of the experiment, it was apparent that the when the Sodium Hydroxide was added to the Lead Nitrate and Copper Sulphate solution, it wasn't able to dissolve, this gave an end result in the first test tube having a concentrated and chalky result. This is because hydroxides are insoluble in water, meaning it is unable to dissolve in water. (http://www.chemguide.co.uk/inorganic/group2/solubility.html). The second experiment involved the solution being run through the ion resin beads. The ion resin beads were used to remove the hard metals, and instead it purifies and softens the solution. The hard metals in the experiment were lead and copper. When they were passed through the resin, the nitrate and sulphate passed through and released the hydrogen ions. Reference: http://genchem.chem.wisc.edu/lab/CCA/STHTM/NAOH/NAOHCUS2.HTM http://www.chemguide.co.uk/inorganic/group2/solubility.html http://www.wikipidea.co.uk ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    alkali and I would think that the acid was of a higher concentration than it actually was so the titres would not be accurate. If I read the meniscus slightly below the calibration line in the volumetric flask then the concentration of sodium carbonate used would be slightly higher that I would think.

  2. effects Concentration and Temperature on the Rate of Reaction

    Graph 4 on the following page shows the concentration of sulphuric acid plotted against the reaction rate. From my line of best fit it is clear that there is a positive correlation between the two. My line of best fit is in a curved shape.

  1. an experiement to test for anions and cations

    No gas was given off, so three drops of barium chloride was added to the test tube. 4. No white precipitate had formed, and the solution was discarded with lots of water down the sink. 5. A fresh solution of substance I was made, with a small amount of water.

  2. Deriving a Solubility Curve

    The water molecules are able to pull the ions away from the lattice because the ion- dipole attraction is strong enough to compete with the ionic bond between the ions in the potassium nitrate lattice and the covalent bonds between the oxygen and hydrogen molecules in water.

  1. Aim: To determine the activation energy of the reaction between bromide ion and bromate(V) ...

    the phenol allows a 'breathing space' which is the same for every run of the experiment. 3. What is the use of methyl red in the experiment? The methyl red here is a substance rapidly bleached by bromine, not a normal acid-base indicator.

  2. Determination of the formula of complex ion

    + 4H(aq)++ 2e- H2SO3(aq) + H2O(l) E0 = +0.17 V The overall E0 = +1.00 - 0.17 = +0.83 V > 0 Therefore, sulphite ion is able to reduce VO2+ to VO2+ Considering the following reactions: VO2+(aq) + 2H+(aq) + e- V3+(aq) + H2O(l) E0 = +0.34 V SO42-(aq)+ 4H+(aq)+ 2e- H2SO3(aq)

  1. Chemistry Iodine Clock

    Mass = 158.105 x 0.0025 = 0.3953g Instruction to make standard solution of Sodium thiosulphate 1- Take lab safety to consideration i.e. wear lab coat, goggles and gloves if needed 2- Measure the solid on an accurate balance, Tare the balance so it shows zero (use a balance that measures

  2. The aim of this investigation is to analyse what cations and anions are present ...

    Sulphate SO42- No reaction No No precipitate No reaction White precipitate Carbonate CO32- Produces CO2 gas Yes No precipitate No reaction No reaction Mummion Produces CO2 gas Yes White precipitate No reaction White precipitate Risk Assessment Chemicals Hazards Risk Safety Precautions Risk level emergency Sodium Chloride Potassium Bromide Sodium iodide

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work