• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Is sulphuric acid dibasic?

Extracts from this document...

Introduction

Chemistry Planning Exercise Aim In this plan I shall demonstrate that sulphuric acid is dibasic. In order to do this affectively I will plan experiment using scientific techniques. The experiment will involve titration. I will then validate these experiments using calculations and appropriate chemistry knowledge. The reactants I have selected that will neutralise sulphuric acid are shown below in the equations: Reactants used in Titration and products obtained: H2SO4 (aq) + 2NaOH (aq) --> Na2SO4 (aq) + 2H2O (l) Background knowledge The acid (sulphuric acid) is identified by being paired with a hydrogen ion and a base (sodium hydroxide) is identified by being paired with a hydroxide group. Sodium Hydroxide neutralises the sulphuric acid to form salt and water. Sulphuric acid A dibasic acid has two hydrogen atoms in its molecule which can be ionised. Sulphuric acid is dibasic acid, because it contains two hydrogen atoms which ionise in aqueous solution to become 2H+ ions. The equation below shows an ionic equation for sulphuric acid. H2SO4 + 2H+ --> SO42- Sodium Hydroxide Sodium Hydroxide is used as a base. It is completely ionic, containing sodium ions and hydroxide ions. The hydroxide ions make sodium hydroxide a strong base which reacts with acid to form water and salt. ...read more.

Middle

Do not try to induce vomiting. Call for immediate medical help. Procedure Preparing a standard solution of sodium hydroxide: You measure accurately a sample of sodium hydroxide and use it to make a solution of concentration of 0.2M. This solution will be used to determine the volume of a solution of sulphuric acid. Procedure 1 1. Measure 50cm3 of 0.4moldm-3 of solution of sodium hydroxide into a measuring cylinder. 2. Transfers the measured sodium hydroxide solution into the volumetric flask through the filter funnel. Rinse the measuring cylinder well, making sure all liquid goes into the volumetric flask. 3. Add water until the level is 1cm of the mark on the neck of the flask. Insert the stopper and shake to mix the content. 4. Using the drooping pipette, add enough water to bring the bottom of the meniscus to the mark, as in the diagram. Insert stopper and shake thoroughly ten times to ensure complete mixing. Simply inverting the flask once or twice does not mix the contents properly and may result in a fault. 5. Label the flask with sodium hydroxide (NaOH). Procedure 2 In procedure 1 you made a standard solution of sodium hydroxide up to 100cm3. ...read more.

Conclusion

Note that this does not introduce a fourth figure; it merely makes the third figure more reliable. Suitable quantities to use in both the experiment In this experiment I have decide to use 50cm3 of 0.4M of sodium hydroxide which will be made up to 100cm3. The standard solution of sodium hydroxide will have 0.2M. 50cm3 of NaOH of 0.2M. Moles = concentration x volume = 0.4x50 = 0.2 1000 1000 Specimen calculation Titration data: Conical flask reagent Sodium hydroxide 0.2mol dm3 25cm3 Burette reagent Sulphuric acid 1.00mol dm3 Indicator Trial run Run 1 Run2 Burette reading Final 28.0 25.5 24.5 Initial 0.00 0.00 0.00 Volume used (titre)/cm3 28.0 25.5 24.5 Mean titre/cm3 25.0 Step 1: Amount of NaOH = concentration x volume Amount= 0.2moldm3 x 25.0 = 0.005mol 1000 Step 2: Amount of H2SO4 = concentration x volume Amount= 1.00moldm3 x 25.0 = 0.025 1000 Step 3: Ratio of H2SO4 to NaOH 0.0025: 0.005 1 : 2 Ratio of H2SO4 to NaOH is 1:2 2 mol of NaOH reacts with 1 mol of H2SO4 so the equation is: H2SO4 (aq) + 2NaOH (aq) --> Na2SO4 (aq) + 2H2O (l) When this reaction occurs 1 mole of sulphuric acid releases 2 moles of hydrogen ions, hence proving that sulphuric acid is dibasic. ?? ?? ?? ?? Candidate name: Manal Javed Candidate number : Centre number: ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Acid-base titration. Objective To determine the concentration of sulphuric acid (H2SO4) using sodium ...

    A student said that he was supposed to dissolve the weighed sodium carbonate sample in 250cm3 of distilled water in a volumetric flask. Is there any mistake in his saying? Explain. -The student was incorrect in saying that. He was supposed to dissolve the weighed sodium carbonate in a beaker

  2. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    bromide solution o Measure the time taken for the methyl orange to change colour with five different concentrations of bromate solution o Measure the time taken for the methyl orange to change colour with five different concentrations of acid solution I can plot a graph of 1/time taken against concentration

  1. Investigating the rate of reaction between peroxydisulphate(VI) ions and iodide ions

    thermometer 3 Measures the temperature of reactants and waterbath I must carefully control start temperatures, as this would affect the data I collect Waterbath 1 Controls start temperatures of reactants.

  2. Investigating how concentration affects rate of reaction

    Numbness. Convulsion. Collapse. Coma. Death. Protective gloves. Protective clothing. Remove contaminated clothes. Rinse skin with plenty of water or shower. To remove substance use polyethylene glycol 300 or vegetable oil. Refer for medical attention. Wear protective gloves when administering first aid. Contact with eyes Pain. Redness. Permanent loss of vision.

  1. Science at Work Research . Dulux Paints, a Hospital, a leisure centre and a ...

    Health and safety: Like in the hospital the GP may have some of the same constraints to ensure safety. * Ensure all equipment is clean and safe to use * Ensure that gloves are worn when treating a patient * All needles will be put into a container * A

  2. Chemistry planning exercise

    This will be used to determine the concentration of the sulphuric (VI) acid sample. However, the weight of sodium carbonate I need to use is still unknown, so this will have to be found. Using the formula n= Vc, where, n= moles of solute (mol.)

  1. The Determination of rate equation

    detect an anomalous, as it's difficult to detect a trend using less data. To increase the reliability of the collected data I will repeat the experiment for each different concentration 3 times, as it will reduce errors caused during the experiment.

  2. Investigating the Volume of a Drop

    15. Clean everything up. Data Collection Attached to the back of the lab. 2 Data Processing and Presentation Difference = End volume - start volume Ex. End volume = 2.11ml, start volume = 2.00ml 2.11ml - 2.00ml = 0.11 ml = difference Volume per drop = Difference / 10 Ex.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work