• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Kinetics of the Acid-Catalysed Propanone/Iodine Reaction(redraft)

Extracts from this document...


Unit 2 - Prescribed Practical Activity 5 James Aspden Kinetics of the Acid-Catalysed Propanone/Iodine Reaction Introduction: Aim: To calculate the order of reaction with respect to iodine,the rate of reaction and the rate constant using hydrogen ions to catalyse the reaction. This can be done by taking a reaction mixture, in which the initial concentrations of propanone and hydrogen ions are very much larger than that of iodine. With such conditions, only the concentration of the iodine will vary significantly during the reaction and this will allow us to see what effect it has on the reaction rate. The course of the below reaction can be followed by monitoring the concentration of iodine. This involves removing samples from the reaction mixture from time to time and analysing them for iodine. H+(aq) CH3COCH3(aq) + I2(aq) ==> CH3COCH2I(aq) + HI(aq) _________Rate__________ k = [CH3COCH3(aq)] [H+(aq)] The iodine was analysed by titrating the acid/propanone/iodine solution against 0.0050 mol l-1 sodium thiosulphate. ...read more.


A burette was then rinsed, including the tip with 0.0050 mol l-1 sodium thiosulphate and filled with the same solution. The sulphuric acid/propanone mixture was then added to the iodine solution and the timer was immediately started. The flask was stoppered and swirled to ensure thorough mixing. After about two minutes, 10cm3 of the reaction mixture was pipetted into one of the conical flasks containing the sodium hydrogencarbonate solution, and the time was noted when the pipette was half empty. The contents of the flask was swirled. This solution was then titrated against 0.0050 mol l-1 sodium thiosulphate, and when the solution turned straw coloured, a few (three) drops of starch solution was added. The titration was then continued to the end-point carefully to ensure the end-point was not overshot. This was then repeated after about 6, 10, 14, 18, 22 and 26 minutes. ...read more.


This is because on the graph the gradient was constant with respect to iodine concentration. The rate of the reaction was 2.26x10-6 and the rate constant was calculated to be 1.8x10-5 mol-1 l/s. If a lower temperature was used the reaction rate would decrease because temperature is a measure of the average kinetic energy particles have, so therefore there would be fewer sucessful collisions. If a lower initial concentration of propanone was used, the rate of reaction would decrease, as there would be a fewer number of particles able to collide. Lowering the concentration of iodine would not effect the reaction rate as it is zero order. The rate constant would not be affected by a higher temperature or a higher concentration of iodine. Iodine is not in the rate determining step because it is zero order and therefore not in the rate equation.The rate determining step is determined by the slowest step in a reaction mechanism, shown by the rate equation. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Marked by a teacher

    Finding out how much acid there is in a solution

    The colour you see will be a mixture of the two (orange). There is a 50/50 colour, due to equal concentrations of acid and alkaline. Sodium Carbonate: In this investigation, there will be a chemical reaction between sodium carbonate and sulphuric acid.

  2. Order of Reaction between Iodine and Propanone

    ion: I2(aq) + 2S2O32-(aq) � S4O62-(aq) + 2I-(aq) ?no. of mole of iodine in the reaction mixture =(1/2)(that of sodium thiosulphate added) =(1/2) (volume of sodium thiosulphate added)(molarity of sodium thiosulphate added) ?(no. of mole of iodine in the reaction mixture)/(volume of reaction mixture) = [(1/2)

  1. Investigating how concentration affects rate of reaction

    Time Taken When Stirred by Hand (seconds) Time Taken When Stirred by Magnetic Stirrer (seconds) Time Taken When Left Without Stirring (seconds) 0.003 76.0 67.5 60.5 0.004 51.5 52.0 53.5 0.005 41.5 45.5 39.5 0.006 36.0 40.5 44.5 0.008 33.0 29.5 33.5 0.01 31.5 24.0 25.0 From my results a reliable trend can be seen fro the

  2. Free essay

    Experiment. Is the order of reaction affected if the acid is monoprotic or diprotic?

    However it can also be very slow and time consuming. -Another method that can be used is the time taken for the metal to completely dissolve in an acid solution. This would have to be repeated at various concentrations for the different types of acid.

  1. Investigating the rate of reaction between peroxydisulphate(VI) ions and iodide ions

    Kinetic energy is given by the formula: The kinetic energy of a point object is proportional to its absolute temperature: Mass will be constant within a particular species, meaning that the kinetic energy is only dependent on the velocity at which the particles are moving.

  2. The Determination of rate equation

    When we dilute a solution the number of moles remain constant, just the volume changes to reduce the Molarity. Since the number of moles equals Molarity x Volume We can use the equation bellow to work out the molarity of any solution quantity.

  1. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    a reacting gas o The effect of radiation on reactants o The use of a catalyst 1.2 - Measuring the Rate of Reaction The way in which the rate of a reaction is measured depends very much on the reaction being studied.

  2. Kinetics of the Acid-Catalysed Propanone/Iodine Reaction

    Another 25cm3 pipette was rinsed with 1.0 mol l-1 propanone solution, and then 25cm3 of this solution was transferred into the conical flask containing the acid and the flask was stoppered. A measuring cylinder was then used to add 10cm3 of sodium hydrogencarbonate solution to each of the seven 100cm3 conical flasks.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work