Moscow, Russian Federation Summer-time pollution and summer smog problems

Authors Avatar

Date: 02/28/2011

Moscow, Russian Federation

Summer-time pollution and summer smog problems

  1. General Characteristics of Moscow city

The capital of the Russian Federation, Moscow city is one of the largest urban settlements in the world. With more than 13 million people, Moscow is a center of heavy transportation, remaining industrial works and constant expansion (Demographia 2010). Moscow is subject to moderate continental climate, which provides for some minor pollution reduction due to precipitation patterns and weak winds. Moscow also suffers from peat bog and forest fires that result from dry summers (Federal Portal 2010; Mosecomonitoring 2010; Roshydromet 2010). Generally, Moscow is considered to be one of the most polluted cities in the world due to several characteristics that will be further analyzed in this paper such as smog, temperature inversion and stratification patterns as well as humidity (Federal Portal 2010; Elansky et.al 2007; Gorchakov et al 2006).

Moscow has 10 districts, with the most polluted ones located in the center of the city and down to the Southeast region (Lezina 2010; RIA News 2008). According to Figure 1, green areas are environmentally suitable for a living, orange ones are alarming and the red ones show more levels of pollution compared to the other two categories (RIA News 2008). Interestingly, the red regions on the map correlate with the remaining operational factories and heavy traffic of Moscow (Figure 2) (Lezina 2010; Mosecomonitoring 2010; Plaude 2007).      

Figure 1. Ecological regions of Moscow: green – low levels of pollution, orange – alarming levels of pollution, red – high levels of pollution (RIA News 2008).

Ever since Russian Federation emerged from the Soviet Union, the previous trend of building large factories and power plants within the city began to slowly decline (Shehgedanova et al 1999). For example, Moscow used to have many more operational small heat generating power plants compared to now. At the moment, the decrease in operational industrial buildings allowed the remaining factories to start focusing on their emissions and apply end-of-pipe solutions to avoid some of the polluting substances (Elansky et al 2007; Ionov and Timofeev 2009; Mosecomonitoring 2010).

Figure 2. Distribution of protected natural resorts, industries and residential areas in Moscow (Lezina 2010).

As of today, the operational factories still contribute about 11% of overall emissions and only 6% goes to the heat generating power plants (Figure 3) (Mosecomonitoring 2010). The major polluting agent of Moscow city is cars and public transport (Mosecomonitoring 2010; Roshydromet 2010).  

Figure 3. Mostly Moscow pollution is generated by automobile transport (83%), industry (11%) and heat generating power plants (6%) (Mosecomonitoring 2010)

Car fleet has almost tripled since the end of the 90s (Mosecomonitoring 2010; Lezina 2010; Plaude et al 2007). This fact would be expected to draw the concentrations of such pollutants as NO and NO2, PM10 and others over the maximum permissible values, yet this has not been observed in none of the data provided the Mosecomonitoring and Roshydromet measuring methods. This issue will be brought up in section II, where the credibility of the overall data obtained from Moscow organizations is questioned. Car and public transport contribute more than 80% of the overall emissions to Moscow ecological situation (Mosecomonitoring 2010; Plaude et al 2007). It is crucial to precisely measure the emitted substances in order to proceed with policy and engineering measures to resolve the issue of such immense pollution contribution from automobile source.

II. Atmospheric pollution monitoring in Moscow.

Currently there are three different independent organizations that measure levels of air pollution in Moscow city. These include:

  1. Municipal company “Mosecomonitoring” which samples the air quality every 20 minutes and uses specific gas analysis techniques (28 stations in Moscow) (Mosecomonitoring 2010)
  2. Governmental organization “Roshydromet” which has the longest history of Moscow air sampling (16 stations) (Roshydromet 2010)
  3. Moscow State University (MSU) Observatory in association with the Russian Academy of Sciences, which conducted its research approximately for the last decade (Elansky et al 2007; Lokoshenko and Elansky 2006).  

Despite such a variety of sampling stations and data obtained by all three organizations, some parameters are very different from each other, yet obtained from the same location (Lokoshenko and Elansky 2006; Mosecomonitoring 2010; Roshydromet 2010. This study questions the credibility of these obtained results due to the partially incomplete tables that were publically provided by each of the Moscow organizations. According to the observations, data supplied by Roshydromet was less complete and not as available as that of Mosecomonitoring (Mosecomonitoring 2010; Roshydromet 2010). The latter, however, also had gaps in its datasets and did not present monthly averages of pollutants. Many stations of Mosecomonitoring underwent closure for certain periods of time for which the data are unavailable. As for the MSU Observatory, those results were found in literature and compared to the Mosecomonitoring and Roshydromet data (Lokoshenko and Elansky 2006). The results were selected for the most recent years of 2002-2009 and were converted into monthly concentrations in ppm (CO, NO2 and O3) or mg/m3 (PM10) in order to be used for general assessment in the following sections of this paper. Lack of credible data, however, presents major issue for Moscow atmospheric pollution studies. It is crucial for all three organizations to assess their findings in order to produce coherent user-friendly datasets that would be available in both Russian and English.    

Join now!

III. Summer time atmospheric phenomena

Before one can talk about the overall levels of air pollution associated with Moscow it is crucial to consider several atmospheric phenomena that contribute to the current pollution status. Moscow as a large city experiences the effect of the “heat island” where the annual temperatures within the city are usually 1.5-2C higher than those of the suburbs (Stathopoulou et al 2008). This effect is more pronounced in winter, yet in summer it is also observed during the nighttime (Shahgedanova et al 1999).

The heat island effect does not allow for rapid clearing of the atmosphere ...

This is a preview of the whole essay