• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

My aim is to find out by changing the depth of the copper changes the current.

Extracts from this document...

Introduction

During electrolysis, positively charged ions move to the negative electrode and negatively charged ions move to the positive electrode. When compounds are electrolysed, new substances are produced at the electrodes. By passing a constant electric current through an aqueous copper sulphate solution that the passage of ions through this solution results in copper atoms being dissolved into the solution from the anode while positive copper ions being discharged at the cathode.

Aim:My aim is to find out by changing the depth of the copper changes the current.

These are the variable that I could have changed:

  1. Time
  2. Current
  3. Temperature
  4. Concentration of solution
  5. Quantity of solution
  6. Size Of electrodes
  7. Distance between the electrode
  8. The surface of the electrode
  9. Depth of the copper in solution

The variable I will be changing is the depth of the copper in the solution.  The experiment carried out aimed to monitor if by changing the depth the Copper (Cu) metal in the Copper Sulphate solution (CuSo4) affected the current. Whilst at the same

...read more.

Middle

   Apparatus list:

  • Copper
  • Cylinder 100cm
  • Beaker
  • Copper Sulphate Solution 100ml
  • Voltmeter
  • Wires: Cathode and Anode
  • Power Pack

Method:

After collecting all the apparatus and setting up the voltmeter etc I measured the copper sulphate solution and made sure the wires were attached to the correct ends. Anode being the positive end and Cathode the negative. I need to mark the centimetres onto the copper so I can change the depth accurately I will mark centimetres from 1-5 because hey are the depths I am looking carefully at. After every depth I need to take down the current. After I have completed my experiment for accuracy I will repeat it two more times then work out the average.

Safety Precautions:

* Electricity is dangerous therefore be careful while connecting the apparatus always check if the power supply is turned off.

* Too much electricity is also dangerous because it might cause the equipment to work over load causing it to break. May be the circuit wire might melts causing fires.

* Always wear safety glass because something might happen to cause you to go blind e.g.

...read more.

Conclusion

Evaluation:

Although this was a successful experiment, there were some factors of the experiment, which could have been improved to make it even more successful. One of these factors could have been the copper, which, even after a good clean were still quite dirty and obviously still had irremovable substances from previous experiments still attached to them. If this experiment were to be repeated for a second time, in need of greater accuracy, it would be imperative to have a new piece of copper, which have never been used before.

Another factor is that my graph leaves some doubt in my mind if the current is actually increasing or maybe I need to look back and see if my experiment was totally fair. As I said in my conclusion the graph doesn’t have an exact line of best fit. It seems to curve near the end. If I was to repeat my experiment I would try more depths and see if my graph fattens more or if there is just a fault in my results. Apart from this I can’t see any reason to why my experiment wasn’t accurate.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Assess how changing the electric current in the electrolysis of acidified water affects the ...

    All other possible variables must be controlled. These include: * Position of the electrodes within the solution - moving the electrodes closer together is a way of varying the current. It was found in the preliminary work that moving the electrodes closer together caused an increase in the current.

  2. Investigating the factors affecting the size of current flowing through a length of resistivity ...

    This would mean larger currents would be produced. The value for the resistivity of the putty which UNILAB produced and which I used to predict some values would therefore be different to the values my experiments produced. In order to work out the resistivity of the putty which I used,

  1. The electrolysis of copper from copper sulphate solution

    The purification process begins is at the anode. I predict this because I think that this is where the copper will be deposited, the reason being, electrons are flowing from negative to positive. These electrons get rid of the coppers positive charge, leaving pure copper. The cathode has a thin sheet of pure copper roughly 99 percent pure.

  2. An experiment to investigate how the resistance between two copper plates immersed in copper ...

    The readings were taken and recorded. * The previous stage was repeated for 3cm, 4cm, 5cm, 6cm, 7cm, and 8cm of the plates covered. * For all of the readings, a thermometer was put into the beaker to measure the temperature so that any fluctuations could be noted.

  1. AimI am trying to find out how the current changes with the area of ...

    The bulb watt - this would have to be kept constant, i.e. if I use double the watt of the bulb that double the photons will hit the solar cell. 6. The card - If this is change, than this could affect the number if photons which hit the solar cell.

  2. How does the mass of copper plated in the electrolysis of copper sulphate solution ...

    So now I am going to predict the results that I should be getting. This is the calculation I am going to use: Charge (coulombs) =time (sec) x current (amps) = 600 x 0.25 = 150 coulombs 95000 coulombs = 1/96500 moles of electrons 150 coulombs = 1/96500 x 150

  1. In this experiment we are investigating the effect of concentration on the current flowing ...

    appart and so more ions reaching the electrodes, more electrons being transferred and so more current flowing. Fair Test I will not change these variables that may have an effect on the experiment (to the best of my abilities): Distance between plates-Less time need to get to plates Area of

  2. Investigating the factors that affect the conductance of a solution

    Then heat the solution for till the solution reach the next desired temperature and carry out the same process. Repeat the experiments for all the temperatures. Carry out the same experiment again but this time change the electrode and use copper electrode.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work