• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Neutralisation- Enthalpy Change

Extracts from this document...

Introduction

Measurement of Enthalpy change Of Neutralisation Calculations: Formula for calculating enthalpy change is [Q = M x C x change in T] * Q is enthalpy change, which is measured in Joules * M is the mass of liquid used, which is measured in grams * C is the specific heat capacity of the liquid, which is constantly 4.2 J deg��g�� * Change in T is the temperature change, which is the highest temperature minus the initial temperature Formula for calculating moles is [N = C x V] * N is the number of moles * C is the concentration of liquid used, which is measured in moles/dm� * V is the volume of liquid used, which is measured in dm� (d) Enthalpy change of HCL: Enthalpy change (Q) of HCL = M x C x change in T = (25 + 21.5) x 4.2 x 6.9 = 46.5 x 4.2 x 6.9 = 1347.57 J No of moles = C x V = 1 x 25/1000 = 0.025 1/0.025 = 40 40 x 1347.57 = 53902.8 53902.8/1000=53.9028 ENTHALPY ...read more.

Middle

So therefore, I can conclude that the enthalpy of neutralisation of an acid with an alkali does not depend on the particular acid or alkalis providing both are strong. My results clearly show this as all acids and alkalis were strong and gave approximately similar values. However, you have to use more moles of weak acid to achieve the same extent of neutralisation compared to using a strong acid, assuming both acids are of the same basicity. Hence, for a weak acid, the enthalpy change per mole of weak acid is less because you used more weak acid than strong acid to achieve the same extent of neutralisation. (f) Evaluation The values for Hydrochloric acid and Nitric acid were -53.90 kJmol�� and -55.64 kJmol�� respectively. These were relatively close to the expected value of -57 kJmol�� however; the value for Sulphuric acid was not. The enthalpy change of sulphuric acid was of -66.68 kJmol�� and was far from the value I was expecting. ...read more.

Conclusion

One source of error could have been that while reading the temperature off of the thermometer, I could have read it wrong or the mercury in the thermometer was broken up. I also may have held the pipette from the bulb which would have affected the volume that it holds and therefore alter my results. Another error is that there may have been many inaccurate burette readings. This would clearly affect the temperature change of the reaction as it would mean that more of the reaction has taken place at the amount of liquid stated, and so the rate would be faster than it should be at that point. As a result, the values for the enthalpy change for one mole of neutralisation would be different, making my results inaccurate. To further improve my experiment I could read the thermometer and burette more accurately, allowing a much smaller margin of error. Also I would deter from holding the pipette from the bulb, as this would seriously affect the volume that it holds, and in turn make my experiment void and of little use, as it wouldn't be entirely accurate. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    as each drop affects the colour change and could mean missing the endpoint. I achieved three measurements of my titres within 0.1cm3 which means they are reliable results. The ideal concentration of sodium carbonate that I was going to make up was 0.1 mol dm-3.

  2. Peer reviewed

    Deducing the quantity of acid in a solution

    5 star(s)

    Using the three concordant titres and calculating their average, we will then find the volume of the final solution, what will help us to calculate the final concentration. (20.15 + 20.25 + 20.20)/ 3 = 20.20 cm3 of H2SO4 20.20 cm3 = 0.0202 dm3 Step 9: Calculate concentration of the

  1. effects Concentration and Temperature on the Rate of Reaction

    This is due to the fact that they are more accurate apparatus. The error associated with a 50cm3 burette is +/- 0.1cm3. This is far more accurate than the value for a 25cm3 measuring cylinder, which is +/- 0.5cm3. When using a burette the measurement should be read from the bottom of the meniscus.

  2. Application of Hess(TM)s law to Determine the Enthalpy Change of Hydration of Magnesium Sulphate(VI)

    = 0.0251mol Initial temperature of MgSO4=26.5oC Final temperature of MgSO4= 30.0oC Temperature change= 3.5oC Mass of solution= 50.0 + 3.018= 53.018g Energy change= 3.5 X 53.018 X4.2 + 3.5 X 1.936 X 1.3 = 788.1734 J Energy change per mole of magnesium sulphate= 788.1734 / 0.0251 = 31.44 kJ Enthalpy

  1. Lab report Determination of Enthalpy Change of Neutralization

    Mass of thermometer = 20.73 g = 0.02073Kg Mass of glass rod = 22.34 g = 0.02234 Kg Mass of plastic beaker = 2.28 g = 0.00228 Kg Length of the thermometer = 29 cm Length of the glass rod = 26 cm The length of thermometer and glass rod

  2. The Effects of Strong and Weak Acids on the Order of a Reaction.

    Figure 3: http://www.docbrown.info/page03/3_31rates.htm#3a Effect of temperature As stated previously, every particle has some energy within them - this is called Kinetic energy. As the temperature is increased, the kinetic energy these particles have is also increased. This means that the particles are not only moving faster - which will help

  1. Enthalpy Change

    g Mass of CaCO used 2.42 g Mass of CaO used 1.5 g Initial Temperature of Acid 22�C Initial Temperature of Acid 23�C Temperature of solution after Mixing 24�C Temperature of solution after Mixing 23�C Temperature Change during reaction 2�C Temperature Change during reaction 7�C * 50 cm of 2 mol dmHCl * Heat capacity of HCl (aq)

  2. Finding Out how much Acid there is in a Solution

    * Sodium Carbonate (Na2CO3) o Can be irritant to the skin, the eyes and the respiratory system o Minimal hazard unless ingested in large quantities o Spilt in laboratory: scoop up, add mineral absorbent in solution, rinse area dddddddwith water o Spilt on skin: wash area with water o Spilt

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work