• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Neutralisation- Enthalpy Change

Extracts from this document...


Measurement of Enthalpy change Of Neutralisation Calculations: Formula for calculating enthalpy change is [Q = M x C x change in T] * Q is enthalpy change, which is measured in Joules * M is the mass of liquid used, which is measured in grams * C is the specific heat capacity of the liquid, which is constantly 4.2 J deg��g�� * Change in T is the temperature change, which is the highest temperature minus the initial temperature Formula for calculating moles is [N = C x V] * N is the number of moles * C is the concentration of liquid used, which is measured in moles/dm� * V is the volume of liquid used, which is measured in dm� (d) Enthalpy change of HCL: Enthalpy change (Q) of HCL = M x C x change in T = (25 + 21.5) x 4.2 x 6.9 = 46.5 x 4.2 x 6.9 = 1347.57 J No of moles = C x V = 1 x 25/1000 = 0.025 1/0.025 = 40 40 x 1347.57 = 53902.8 53902.8/1000=53.9028 ENTHALPY ...read more.


So therefore, I can conclude that the enthalpy of neutralisation of an acid with an alkali does not depend on the particular acid or alkalis providing both are strong. My results clearly show this as all acids and alkalis were strong and gave approximately similar values. However, you have to use more moles of weak acid to achieve the same extent of neutralisation compared to using a strong acid, assuming both acids are of the same basicity. Hence, for a weak acid, the enthalpy change per mole of weak acid is less because you used more weak acid than strong acid to achieve the same extent of neutralisation. (f) Evaluation The values for Hydrochloric acid and Nitric acid were -53.90 kJmol�� and -55.64 kJmol�� respectively. These were relatively close to the expected value of -57 kJmol�� however; the value for Sulphuric acid was not. The enthalpy change of sulphuric acid was of -66.68 kJmol�� and was far from the value I was expecting. ...read more.


One source of error could have been that while reading the temperature off of the thermometer, I could have read it wrong or the mercury in the thermometer was broken up. I also may have held the pipette from the bulb which would have affected the volume that it holds and therefore alter my results. Another error is that there may have been many inaccurate burette readings. This would clearly affect the temperature change of the reaction as it would mean that more of the reaction has taken place at the amount of liquid stated, and so the rate would be faster than it should be at that point. As a result, the values for the enthalpy change for one mole of neutralisation would be different, making my results inaccurate. To further improve my experiment I could read the thermometer and burette more accurately, allowing a much smaller margin of error. Also I would deter from holding the pipette from the bulb, as this would seriously affect the volume that it holds, and in turn make my experiment void and of little use, as it wouldn't be entirely accurate. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    For the last two titres, I let 23cm3 of acid flow straight into the conical flask as I knew that the endpoint was around 24.5cm3. I slowed down the flow of acid and then added it drop at a time to ensure that the colour change could be detected instantly

  2. Peer reviewed

    Deducing the quantity of acid in a solution

    5 star(s)

    Reading the meniscus of: o Volumetric flask o Burette o Pipette - Judging the endpoint - Adding the acid and swirling the flask It is possible that some Na2CO3 was lost during the transfer of it. This could be caused by either particles being blown by a draught of wind or particles left in the weighing boat or beaker.

  1. effects Concentration and Temperature on the Rate of Reaction

    This is due to the fact that they are more accurate apparatus. The error associated with a 50cm3 burette is +/- 0.1cm3. This is far more accurate than the value for a 25cm3 measuring cylinder, which is +/- 0.5cm3. When using a burette the measurement should be read from the bottom of the meniscus.

  2. Application of Hess(TM)s law to Determine the Enthalpy Change of Hydration of Magnesium Sulphate(VI)

    = 0.0251mol Initial temperature of MgSO4=26.5oC Final temperature of MgSO4= 30.0oC Temperature change= 3.5oC Mass of solution= 50.0 + 3.018= 53.018g Energy change= 3.5 X 53.018 X4.2 + 3.5 X 1.936 X 1.3 = 788.1734 J Energy change per mole of magnesium sulphate= 788.1734 / 0.0251 = 31.44 kJ Enthalpy

  1. Lab report Determination of Enthalpy Change of Neutralization

    /1000 = 0.05 Kg Heat given out = (0.05 * 4200 + (3/29 * 0.02073 + 3/26 * 0.02234) * 840) * 12.0 = 2567.405812 J HCl (aq) + NaOH (aq) � NaCl (aq) + H2O (l) No of mole of NaOH = 2 * 0.025 = 0.05 mol According

  2. The Effects of Strong and Weak Acids on the Order of a Reaction.

    It is wrong to say, however, that the catalyst lowers the activation energy of a reaction. The definition of a catalyst is a substance which provides an alternate route for the reaction with a lower activation energy and can be used in a reaction without getting used up, itself.

  1. Enthalpy Change

    g Mass of CaCO used 2.42 g Mass of CaO used 1.5 g Initial Temperature of Acid 22�C Initial Temperature of Acid 23�C Temperature of solution after Mixing 24�C Temperature of solution after Mixing 23�C Temperature Change during reaction 2�C Temperature Change during reaction 7�C * 50 cm of 2 mol dmHCl * Heat capacity of HCl (aq)

  2. Finding Out how much Acid there is in a Solution

    I will add a small volume of deionised water and dissolve the solid in this, stirring with a glass rod. When all of the solid is dissolved, I will pour the solution into a 250cm3 volumetric flask using a funnel.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work