• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Neutralization investigation

Extracts from this document...

Introduction

Neutralization investigation Nicky G I will conduct an investigation into the effect an alkali and an acid have on each other using titration, find out whether neutralization occurs, and what factors effect neutralization if any. I will look at how concentration and type of an acid can affect neutralization. Acids And Alkalis Acids and alkalis are substances found everywhere in our daily lives. They both have different properties that can be both harmful and advantageous. Some examples of substances containing alkaline are toothpaste, which is used to fight acid in the mouth built up by bacteria in the mouth digesting sugar, and antacids, which are tablets used to combat acid indigestion. A base is any substance that can neutralize an acid, so an alkali can be called a soluble base as it also dissolves in water. There are other known compounds that can neutralize acids such as zinc carbonate. Acidic solutions are often found in the kitchen and include cleaning products to fight lime scale build up, and stronger oven spray. All these examples of acidic and alkaline solutions are also examples of neutralization, which occurs equal in our daily lives. A neutral substance is neither an acid nor an alkali and shares no properties with them. Neutral substances such as pure water tend not to be toxic and corrosive and generally are much safer to handle than acids and alkalis. When a neutral substance is formed water and salt are always two of the resulting products. The type of salt which is formed is derived from the type of acid used e.g. sulphide makes sulphate salts, nitrogen makes nitrate salts, and chloride makes chlorine salts. This should mean hydrochloric acid and sulphuric acid should leave chloride and sulphide salts as well as pure water. Some examples of neutralization and its products found in labs: Nitric acid + magnesium oxide magnesium nitrate (salt) ...read more.

Middle

After each type concentration and type of acid I have measured I will wash the burette out with distilled water. I will make sure the water reaches up to the 50cm3 mark on the burette so that the whole burette is cleaned and will than turn the tap at the bottom of the burette so that no water is left in the burette, as if water was left in it the measurement of the acid added would not be accurate. I will do this process for all of the different concentrations for 0.1M, 0.5M, 1M, 1.5M, 2M sulphuric acid, and I will than move onto hydrochloric acid, where I will repeat the same process. The range of concentrations I am using is sensible as they are just different enough to show clear differences in the results. I have already planned and attempted a preliminary test for hydrochloric acid, 1 molar. However, this test did not work well as I found the substance did not turn pink and therefore no neutralization took place. I decided that the most likely reason for this was that the acids were accidentally contaminated in some way. Unfortunately, there was nothing I could think of to change my method to prevent this happening again as I was not entirely sure that this was the reason for the problem, and I could not think of anything that would help prevent this happening again except to be extra careful about which substance I am using. Variables And Fair Test The variables that will effect the investigation are the amount of sodium hydroxide that is put into the beaker to begin with, the amount of hydrochloric acid and sulphuric acid added to this, and the ionic composition (strength) of the acids. However, if all of these things change throughout the investigation than the experiment will not be fair or accurate because it means I will be obtaining results for things I am not investigating, and not obtaining enough results to justify a conclusion for the aims I should be investigating. ...read more.

Conclusion

I think this because I know through my own knowledge that when acid rain falls into a river, lime is used to neutralize the acid. I predict that the concentration of the acid will be an important factor on the amount of acid needed to neutralize the alkali. The more hydrogen ions there are in a substance the stronger it will be on the pH scale. This works in a similar way molecules work in a solid object. The denser the molecules in a solid are, the stronger the bonds, and the object will be. Acids work the same, except instead of solidifying they become more acidic as its molecules become stronger. I predict that less hydrochloric acid will be needed to neutralize 25cm3 of sodium hydroxide than sulphuric acid. I think this because I know that sulphuric acid has a more sparse arrangement of ions, and so when it is added to another aqueous solution like sodium hydroxide only some of its acid molecules will be strong enough to form ions. Hydrochloric acid has denser arrangement of ions so I predict less of this will be needed because the molecules form ions much easier. The sodium hydroxide will remove all of the H+ ions and convert them into water, so the more and stronger the H+ ions are the easier neutralization can take place and the less acid is needed. I also know that hydrochloric acid has a stronger acidic pH than sulphuric acid, so if I base my prediction on the accuracy of the pH scale I reach the conclusion that less hydrochloric acid is needed to neutralize 25cm3 of sodium hydroxide. The only factor that affects neutralization is the amount of hydrogen and hydroxide ions present. This can be shown best in an ionic equation as shown below. These equations show that the amount of hydrogen and hydroxide ions present need to be equal in order for neutralization to take place. Using this information I can determine the ratio of the acids, and then work out how much acid is needed to neutralize the alkali. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Marked by a teacher

    Heat of Neutralization. Objective: To investigate the ...

    5 star(s)

    method 1 in the experiment; the spot plotted on the graph was varying to the location we preferred, and it might make the answer a bit different to the correct one. The enthalpy change of neutralization should be much more negative, at least, smaller than -50kJ/mol.

  2. Marked by a teacher

    Stereochemistry of Butenedioic acid

    5 star(s)

    10 cm3 of deionized water was added and warmed slightly to dissolve the acid. 2. 10 cm3 of concentrated hydrochloric acid was added to the beaker and it was covered with a watch glass. Then the beaker was placed inside a 250 cm3 beaker which is about one third full of water.

  1. Determination of the Amounts of Sodium Hydroxide Solution and Sodium Carbonate in a Mixed ...

    Then one may ask,' How do I find out the percentage by mass of sodium carbonate using the second method?' We can do so by titrating the pure solution (no barium chloride added) using methyl orange indicator. The end point indicates the amount of hydrochloric acid used to neutralize both sodium carbonate and sodium hydroxide.

  2. Drug: Antacid Effectiveness Analysis To determine the neutralizing ability of antacids in different ...

    of moles of NaOH required to neutralize excess HCl: No. of moles of NaOH = Molarity � volume = 0.1 � (20.9 / 1000 ) = 0.00209 mol HCl(aq +NaOH(aq --> NaCl(aq) + H2O (l) No. of moles of HCl neutralized by NaOH : 0.00209 mol No.

  1. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    find the order of the reaction: Figure 1.5.1: A zero order reaction Figure 1.5.2: A first order reaction Figure 1.5.3: A second order reaction Figure 1.5.4: A second order reaction - if rate is plotted against concentration squared, then the relationship is proportional Consider the reaction; A + B --> C + D (Equation 1.5.2)

  2. Is sulphuric acid dibasic?

    Emergency Eye contacts: Wash the eye with plenty of water. Continue for at least 10 minutes and call for immediate medical help. Skin contact: Wash off with plenty of water. Remove any contaminated clothing. If the skin reddens or appears damaged, call for medical aid.

  1. Experiment to obtain curves which show how the pH changes during an acid-base titration ...

    6.2 6.7 7.3 7.5 7.6 7.7 7.8 8.0 8.1 Volume /cm3 25.6 25.65 25.7 25.8 26.0 26.2 26.4 26.6 28 30 35.3 pH 8.2 8.4 8.6 8.9 10.9 11.5 11.9 12.1 12.7 13.1 13.3 0.100M NH3 added to 25.0cm3 of 0.100M HCl Volume /cm3 0.0 5.0 10.0 15.0 20.0 24.7

  2. Outline and examine some uses of different metals through history, including contemporary uses, as ...

    Because of Avogadro?s law, in gaseous reactions, gas volumes can replace the number of moles. 1. Distinguish between empirical formulae and molecular formulae. The empirical formula of a compound is the simplest whole number ratio of the atom or ions in the compound.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work