Nonrelativistic string equation

Authors Avatar

Pythagoras could be called the first known string theorist. Pythagoras, an excellent lyre player, figured out the first known string physics -- the harmonic relationship. Pythagoras realized that vibrating Lyre strings of equal tensions but different lengths would produce harmonious notes (i.e. middle C and high C) if the ratio of the lengths of the two strings were a whole number.
   Pythagoras discovered this by looking and listening. Today that information is more precisely encoded into mathematics, namely the wave equation for a string with a tension T and a mass per unit length
μ. If the string is described in coordinates as in the drawing below, where x is the distance along the string and y is the height of the string, as the string oscillates in time t,

then the equation of motion is the one-dimensional wave equation

where vw is the wave velocity along the string.
   When solving the equations of motion, we need to know the "boundary conditions" of the string. Let's suppose that the string is fixed at each end and has an unstretched length L. The general solution to this equation can be written as a sum of "normal modes", here labeled by the integer n, such that

Join now!

The condition for a normal mode is that the wavelength be some integral fraction of twice the string length, or

The frequency of the normal mode is then

   The normal modes are what we hear as notes. Notice that the string wave velocity vw increases as the tension of the string is increased, and so the normal frequency of the string increases as well. This is why a guitar string makes a higher note when it is tightened.
   But that's for a nonrelativistic string, one with a wave velocity much smaller than the speed of light. How do we ...

This is a preview of the whole essay