• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Ohm’s Law Investigation

Extracts from this document...

Introduction

Ohm’s Law Investigation

Introduction: In the following experiment, I predict that the filament

bulb in which we are testing, on will not obey ohm's law. Their are many

factors which make me believe this, such as the temperature of the bulb.

If the filament bulb DID obey Ohm's Law, then the temperature would remain

constant, meaning there would be resistance.

When I think of a light shining, the temperature does not stay the same.

Therefore I believe that the light bulb will not obey Ohm's law.

The formula for Ohm's law  is:

RESISTANCE = pd            or        R = V

           current                       I

The current through a wire is proportional to potential difference (voltage

across the wire) providing the temperature does not change - (which I predict

it shall).

CHANGE IN TEMPERATURE = CHANGE IN RESISTANCE

...read more.

Middle

so no water reaches the wires. We must also check our readings on the Voltmeter - incase any

explosion occurs, and we must check that the wires are carfully fixed in to place. It is also

important, for long hair to be tied up and to wear lab coats.

APPARATUS:

Power Supply (p.s.u) ----- This is the main source of power used in the experiment.

Voltmeter --- this measures the potential difference ACROSS a component (in volts)p.d

Ammeter ---  The measures the current through a component (in amps)

Filament Bulb --- This is what we are testing for Ohm's law with.

Wires --- The experiment is not possible without the use of the wires - in which the current

will flow.

We set up the circuit shown in the diagram above.

...read more.

Conclusion

that it did not obey Ohm's law. I know about Ohm's law from the theory:

A CURRENT THROUGH I WIRE IS PROPORTIONAL TO POTENTIAL DIFFERENCE ACROSS THE WIRE, PROVIDING THE TEMPERATURE REMAINS

CONSTANT.

EVALUATION:

I think the results were overall accurate. We did repeat them twice aswell as including the trail run; but we still could have

been more accurate. We only recorded the Observations once. We could have been more accurate if we did it at least twice. We had no

anomalous results. I think the safety was good and it overall went well - maybe a lack of detail. I think the conclusion is reliable.

To help us on Ohm's law, we could have included more tests on other things for Ohm's law as a simalar investigation - but I was overall

pleased.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. To investigate the relationship between current and potential difference (ohm’s law).

    through a metal wire is 'proportional' to the potential difference (V) across it, if the temperature is constant. Ohm's law, V=IR says that for a certain current (charge flowing at a certain rate), there will be a greater voltage across the wire if it has more resistance.

  2. Investigating how temperature affects the resistance in a wire

    Instructions: 1. Set up the apparatus according to the diagram as above. 2. Fill the kettle with tap water and turn it on, making sure that throughout the experiment it is on and full of hot water and that it is 50cm away from the rest of the apparatus. 3.

  1. Investigation into the resistance of a filament lamp.

    Wien's law suggests that as the temperature of a body increases, the wavelength of maximum emission becomes smaller The formula for Wien's law is: 1.2-To use the equation to find the temperature There are various temperature formulas that we can use to find the temperature, I will show you two different equations to find the temperature.

  2. A2 Viscosity investigation

    Cancel this down to r2?steelg=6?v+ r2?syrupg then rearrange this to leave 6?v on its own. r2?steelg- r2?syrupg =6?v. Then make V the subject, V=g (?steel-?syrup). On the graph plot r2 on the x-axis and v on the y axis which means the gradient= (?steel-?syrup).

  1. To find which of the circuits, shown below, are most suitable to measure a ...

    to the specification mentioned on the first page on my planning: Maximum Pd 5V, Maximum Current 100´┐ŻA Until the actual experiment commences, I will not know for sure how accurate this device is but I will ensure that I pick the most accurate equipment that I have at my disposal.

  2. Magnetism Investigation

    newton per meter of length. '' At the National Institute of Science and Technology, primary measurements of current are made using a current balance. In a current balance, the conductors form part of an arm of a sensitive balance and the force between them, when they carry a current, is counterbalanced by a weight m added to the other arm.

  1. Choosing a light source

    Table of results: Key: Y= yellow, R= red, O= orange, G= green, B= blue, V= violet and I= indigo Light source Spectra Pattern Diffraction Grating Fluorescent ROYGB V Sodium Y Y Energy efficient ROYG (light B)

  2. Resistance Investigation

    Below, a variable resistor is being used to control the brightness of a bulb. The variable resistor contains a long coil of thin nichrome wire. Sliding the control to the right puts more resistance into the circuit, so the bulb gets dimmer.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work