• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Ohm's Law Physics Lab #20

Extracts from this document...

Introduction

Ohm’s Law

Physics Lab #20

Name: Diana Abou Hassan

Partners: Sara Jaber

Michael Muhanna

Rami Jachi

Date Performed: 14/11/2002

Date Due: 21/11/2002

Teacher: Mrs. Khoury Saab

Objective:

The objective of this lab is to determine the relationship between the potential difference across a conductor and the electric current through it. \

Materials:

  • Low voltage variable DC power supply\
  • Two different resistors
  • 2 digital multimeters
  • connecting wires

Procedure: Please refer to lab sheet.

Data Collected:

Resistor 2

Voltage (V)

1

1.5

2

2.5

3

3.5

Current (mA + 0.01mA)

0.42

0.72

1.16

1.56

1.91

2.30

Potential Difference (V + 0.001V)

0.526

0.877

1.404

1.893

2.324

2.796

...read more.

Middle

2.359

2.793

Resistor 2 = 1.202 KΩ

Resistor 7 = 5.07 KΩ

Light Bulb

Before lighting up:

Voltage (V+ 0.0001V)

0.0069

0.0781

0.5780

0.6560

0.7590

Current (mA+ 0.01mA)

0.90

10.50

81.30

92.40

109.70

The light bulb lit up at:

Voltage (V+ 0.0001V)

1.0010

Current (mA+ 0.01mA)

149.30

After lighting up:

Voltage (V+ 0.0001V)

1.6090

1.8310

2.116

Current (mA + 0.01mA)

182.30

200.00

223.50

Data Analysis:

Calculate the slope of each graph:

Sample Calculation:

Slope of Resistor 2 = (y2 – y1) / (x2 – x1)

                                = (2.30 V – 0.42V )/(2.796mA – 0.526mA)

                                = (2.30 V – 0.42V )/(0.

...read more.

Conclusion

Sources of Error:

        The manual adjustment of the voltage may have caused some error as we may have not adjusted it to the exact values required. If there were a more detailed and precise knob, it could reduce the error. Also, the wire were very rusty therefore acting as very poor conductors. The obvious solution would be to use newer wires.  

Conclusion:

        The purpose of this lab was to see how the potential difference and the electric current going through a conductor are related. By graphing the results it showed that they were directly proportional. This proved to be correct also for the cold resistivity of the light bulb, however the resistivity of the light bulb after it lit up contradicted Ohm’s law as the resistivity did not remain constant.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Peer reviewed

    Measurement of the resistivity of Nichrome

    5 star(s)

    = (Rmin - R) / R Rmin = dmin2�R /d2 Min = (dmin2 /d2) -1 dmin = the mean of d-standard deviation The data in the table below is in 3 decimal place Graph A (Wire A) Graph B (Wire B)

  2. Peer reviewed

    Investgating resistivity - Planning and Implementing

    4 star(s)

    If the wire obeys Ohm's Law, no matter the voltage and current, the value obtained for resistance from the formula R=V/I, should be the same, meaning three values for one resistance can be obtained, which, if they show to be equal to within experimental error, improves the reliability of the value of R obtained.

  1. Measuring The Resistivity Of A Pencil Lead.

    This increases the margin of error. The actual value for the biggest source of error is : 0.0595mm Improvements The reliability of the techniques I used are quite reliable but there is still room for improvement. A good way to improve would be to have a pencil lead not in the wooden casing.

  2. Physics - Resistivity

    It is also good to note that having an electric current passing around a circuit produces a magnetic field. This is called Ampere's law. EQUIPMENT This is the equipment I am going to use in the experiments are: Variable resistor: So I can change the voltage, and thus the resistance

  1. Characteristics of Ohmic and Non-Ohmic Conductors.

    These conditions apply to all metallic conductors. Therefore, a thick, short piece of copper will offer negligible resistance when compared with a long copper wire. This is because it is much easier for the electrons in the copper to move through a greater area and the smoother the flow of electrons, the larger the current.

  2. Coulombs Lab Report

    The method we used to charge them, friction by means of a cloth and acetate strip, is almost impossible to measure. Throughout each of the five trials nothing was changed as we simply wanted 5 identical trials.

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    When the current is passed through the atoms vibrate more and collide with some of the other atoms and then give out this kinetic energy. Thus as the current flows the kinetic energy of these atoms is increased. Thus this energy is lost as heat and so makes it difficult for the electrons to pass through.

  2. Finding the Resistivity of a Wire

    I will then follow the same steps to take reading at this length. I will continue to do this until all 0.10m intervals between 1.00m and 0.10m are complete. Page2 o Diameter of Wire: measured using micrometer at three separate points on the wire.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work