• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Ohm's Law Physics Lab #20

Extracts from this document...

Introduction

Ohm’s Law

Physics Lab #20

Name: Diana Abou Hassan

Partners: Sara Jaber

Michael Muhanna

Rami Jachi

Date Performed: 14/11/2002

Date Due: 21/11/2002

Teacher: Mrs. Khoury Saab

Objective:

The objective of this lab is to determine the relationship between the potential difference across a conductor and the electric current through it. \

Materials:

  • Low voltage variable DC power supply\
  • Two different resistors
  • 2 digital multimeters
  • connecting wires

Procedure: Please refer to lab sheet.

Data Collected:

Resistor 2

Voltage (V)

1

1.5

2

2.5

3

3.5

Current (mA + 0.01mA)

0.42

0.72

1.16

1.56

1.91

2.30

Potential Difference (V + 0.001V)

0.526

0.877

1.404

1.893

2.324

2.796

...read more.

Middle

2.359

2.793

Resistor 2 = 1.202 KΩ

Resistor 7 = 5.07 KΩ

Light Bulb

Before lighting up:

Voltage (V+ 0.0001V)

0.0069

0.0781

0.5780

0.6560

0.7590

Current (mA+ 0.01mA)

0.90

10.50

81.30

92.40

109.70

The light bulb lit up at:

Voltage (V+ 0.0001V)

1.0010

Current (mA+ 0.01mA)

149.30

After lighting up:

Voltage (V+ 0.0001V)

1.6090

1.8310

2.116

Current (mA + 0.01mA)

182.30

200.00

223.50

Data Analysis:

Calculate the slope of each graph:

Sample Calculation:

Slope of Resistor 2 = (y2 – y1) / (x2 – x1)

                                = (2.30 V – 0.42V )/(2.796mA – 0.526mA)

                                = (2.30 V – 0.42V )/(0.

...read more.

Conclusion

Sources of Error:

        The manual adjustment of the voltage may have caused some error as we may have not adjusted it to the exact values required. If there were a more detailed and precise knob, it could reduce the error. Also, the wire were very rusty therefore acting as very poor conductors. The obvious solution would be to use newer wires.  

Conclusion:

        The purpose of this lab was to see how the potential difference and the electric current going through a conductor are related. By graphing the results it showed that they were directly proportional. This proved to be correct also for the cold resistivity of the light bulb, however the resistivity of the light bulb after it lit up contradicted Ohm’s law as the resistivity did not remain constant.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Peer reviewed

    Measurement of the resistivity of Nichrome

    5 star(s)

    Therefore R1 /R2 = d12 /d22 Rearrange it R1 = d12 � R2 / d22 From the equation above I could get that the Rmax = dmax2�R /d2 Maximum value of percentage uncertainty of resistance (Max) = (Rmax - R)

  2. Peer reviewed

    Investgating resistivity - Planning and Implementing

    4 star(s)

    This can be achieved by keeping the current below 1A, which will help prevent the wire from heating up. Also the cross sectional area of the wire will be kept constant, by using the same piece of wire to test each length, and measuring its diameter using the micrometer in

  1. Physics - Resistivity

    Ammeter: This is to measure the amps in the circuit, so I can measure the resistance. I will measure the resistance using the voltage divided by the amps. As per Ohms law and the equation V=IR. Voltmeter: This would be used alongside the variable resistor to ensure I know the voltage across the bulb.

  2. Coulombs Lab Report

    Moreover there were several difficulties at the start of the experiment with regards to how quick and how long to use the cloth to charge the acetate strip. It became very frustrating after rubbing the cloth on the stick

  1. Characteristics of Ohmic and non-Ohmic Conductors.

    As more electrons flow, current increases. Current (I) Voltage (V) As voltage increases, the temperature increases, the resistance decreases, and hence the graph gets steeper. Resistance (?) Temperature (oC) The resistance of a semiconductor decreases as the temperature increases. I will now experiment to see if my predictions based on my knowledge of the different kinds of conductors are correct.

  2. Measuring The Resistivity Of A Pencil Lead.

    My other set of anomalies is at 125mm-135mm. These are anomalies as they are both the same value for different lengths. This may be because of heating of the pencil lead. These are the only anomalies I fell I have encountered in my experiment because looking at the graph I feel that there aren't any other anomalies.

  1. Characteristics of Ohmic and Non-Ohmic Conductors.

    Conductors and semiconductors * CONDUCTORS The electron theory states that all matter is comprised of molecules, which in turn are comprised of atoms, which are made up of protons, neutrons and electrons. The electrons in an atom play the most important role with reference to the conduction of electricity.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    So this would have to be seen only when I deal with the semiconductors separately. Silicon and germanium are semiconductors. Semiconductors are materials in which the amount of current increases with temperature. So this means that they are better to use if the temperature is high.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work