• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Our Universe as a Laboratory for Understanding Physical Laws

Extracts from this document...

Introduction

Our Universe as a Laboratory for Understanding Physical Laws

Cosmology is the study of the origin, current state, and future of our Universe. With recent technological advances, we have been able to probe deeper and deeper into the large scale structure of the vast universe and the small scale structure of matter. Our basis of understanding and determining fundamental physical laws in assumed to be correct when measured locally in laboratory experiments. These laws are verified over and over again so that they can be extrapolated to a distant time and place where they can be investigated with modern astronomical methods. The universe is basically used as a massive laboratory. The universe as defined by Dr. Green is "everything that can be measured now or at any time in the future." What if our current understanding of the universe is not as perfect as we believe it to be? Our just we being egocentric in assuming that the fundamental physical laws that we have determined locally can apply to the rest of the universe? I am going to discuss why our universe

...read more.

Middle



If the universe is in fact accelerating, there has to be some mysterious force causing this. This force has been labelled dark energy by physicists and astronomers. Dark energy would be almost impossible to detect in a local laboratory because of its tiny density and its very weak interactions. The best way to try to understand dark energy would be to thousands of type 1a supernovae. This is exactly what the SuperNova/Acceleration Probe (SNAP) is going to do. SNAP is going to orbit a 3-mirror, 2-meter telescope circling the globe every 14 days. It will discover and accurately measure over 2,000 type 1a supernovae a year. This would be 20 times the amount that was found in a decade of ground-based research. It will have a very wide-field camera with a billion pixels that will collect images hundreds of times larger than its predecessors. Measuring spurts or slowdowns in the expansion history of supernovae will provide an excellent way in understanding dark energy (Preuss online).

While using the universe to measure such forces as dark energy may be the best laboratory, at the same time it demonstrates how our understanding of the universe is not perfect.
...read more.

Conclusion



We are very fortunate to be living in this epoch of a rapid accelerating universe. I think with the proper funding and technology, we will have the capacity to understand our universe much better. Our universe has the capacity to be the best laboratory in understanding and determining fundamental laws, but until we can fully understand darkness of the universe I don't think we can say it is. I agree with the many scientists, astronomers, and physicists, who believe that type 1a supernovae hold the key to understanding our universe. I think our outlook on the universe should be "Carpe Diem," seize the day, or in a cosmologist's term, seize the epoch because if our universe is truly accelerating exponentially then this is our only chance as humans in understanding and determining the fundamental physical laws of the universe.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Peer reviewed

    Black Holes Research and Report

    4 star(s)

    entering them emits x-rays, proving them to be one or the other. Micro black hole - also known as quantum mechanical black holes, they are tiny hypothetical black holes which have not yet been discovered, but are a very possible occurence.

  2. Peer reviewed

    Theories of the Universe

    3 star(s)

    The trouble is that there are many versions of the string theory equations. Making matters worse, each version allows for many solutions. Physicist Joseph Polchinski has recently estimated that there may be as many as 10 to the power of 60 solutions to these equations, and every solution represents a different possible universe.

  1. Determine the value of 'g', where 'g' is the acceleration due to gravity.

    This error is too small to be plotted on the graph of T2 against e. The error in the time period is the error from the stopwatch and the human reaction time.

  2. Free essay

    OCR Physics B Research Project - The Expanding Universe

    If there is an infinite number of stars, an infinitely large amount of light should reach us. From this, it can be concluded that the universe is not infinite in size and age. After the Russian mathematician, Alexander Friedmann, learned of Einstein's Theory of General Relativity, he saw that it implied a changing universe.

  1. Dark Matter

    And with Galileo Galilee's invention of the telescope, it was proven that Copernicus' theory was valid. Johannes Kepler and the Planetary Motions Johannes Kepler was an assistant of Tycho Brahe. Brahe had been recording his observation from the stars in the sky and Kepler had been wise enough to examine these observations.

  2. Investigate any relationship present between the distance between a solar cell and a lamp, ...

    Equipment 1: * Metre Rule * Solar Cell * Milli-ammeter * 12V DC Power Supply * W Lamp * Leads Equipment 2: * Ammeter * Voltmeter * Solar Cell * DC Power Supply * Rheostat * W Lamp and stand * Leads * Milli-ammeter Method: The Experiment is to be

  1. Waves and Cosmology - AQA GCE Physics Revision Notes

    ?- + p -> K0 + ?0 ud + uud -> ds + sud ?- + p -> ?- + ?+ + ?- + p The K meson and the hyperon (lambda particle) doesn?t produce any tracks in a bubble chamber.

  2. I intend to investigate whether any correlation exists between the wavelength of light exerted ...

    The gradient will provide a comparable metric that I can use to prove whether or not the photons energy increases the speed at which electrons are freed from their bonds. The higher the gradient, the faster the electrons are released; the lower the gradient proving the opposite.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work