• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Percent Yield Experiment. The limiting reagent for this experiment is strontium chloride hexahydrate. The two products will be strontium sulphate as a solid and copper (II) chloride in an aqueous state.

Extracts from this document...

Introduction

´╗┐Percent Yield Lab By Sean Frank SCH3U - 11 University Chemistry Mr. Posteraro November 26th 2012 All Saints High School Hypothesis: The limiting reagent for this experiment is strontium chloride hexahydrate. The two products will be strontium sulphate as a solid and copper (II) chloride in an aqueous state. The predicted precipitate is strontium sulphate and the reaction should precipitate out approximatly 0.65 g of the substance. Materials: 1. 1 100 ml Wash Bottle 2. 2 50 ml Beakers 3. 1.00g Strontium Chloride hexahydrate 4. 1.00g Copper (II) Sulphate pentahydrate 5. 1 Glass Funnel 6. 1 Filter paper (type 2) 7. 1 250ml Erlenmeyer Flask 8. 100ml Water 9. 1 Digital Scale (precsision withtin a hundredth of a gram) 10. 1 Stirring Rod Apparatus: Procedure: 1. Fill the wash bottle with 100 ml of water 2. Using a digital scale, measure 1g of strontium chloride hexahydrate into a 50ml beaker. 3. Repeat step 2 with 1g of copper (II) sulphate pentahydrate 4. Using the control digital scale (teacher's scale), weigh the filter paper and record its weight. 5. Using the wash bottle, add enough water to the beaker containing the 1g of strontium chloride hexahydrate to completly dissolve the solid compound. Avoid adding any more than nessesary. ...read more.

Middle

Therefore there is 0.6888 grams of strontium sulphate Calculation 4: Percent Yeild Given: Mass of strontium sulphate precipitate 0.66 g Theoretical mass of strontium sulphate 0.6888 g Procedure: Yeild = (Experimental mass/theoretical mass) x 100 = 0.9582 x 100 = 95.82 % ? Therefore the percent yeild of strontium sulphate in this experiment is 95.82 % Calculation 3: Percent Error Given: Mass of strontium sulphate precipitate 0.66 g Theoretical mass of strontium sulphate 0.6888 g Procedure: Error = ((Theoretical yeild ? yeild) / theoretical yeild) x 100 = 0.0418 x 100 = 4.18 % ? Therefore the percent error of the strontium sulphate yeild in this experiment is 4.18 % Table 2: Theoretical calculations of the masses and moles of the reactants and products. SrCl2 - 6H20 Cu(II)SO4 - 5H20 SrSO4 Cu(II)Cl2 11H2O 1.00g 1.00g 0.6888g 0.5043g 0.7431g 266.58 g/mol 249.62 g/mol 183.64 g/mol 134.45 g/mol 18.01 g/mol 3.751x103- mol 4.006x103- mol 3.751x103- mol 3.751x103- mol 4.126x102- mol Analysis: 2. The percentage yeild in the experiment is 95.82 %, which is greater than the target yeild of 95 %. The following are possible factors that may contribute to acheiving a higher yeild. Firstly, it is possible that there was contamination from outside sources, such as lint or dust particles that could have fallen into the drying precipitate. ...read more.

Conclusion

First, the ammount of transfers were kept to a minimum in order to preserve as much of the orginal reactants as possible. Multiple transfers can cause reactants or precipitate to adhere to the walls of the beakers or the funnel. There are only two transfers present in this procedure. Second, the solutions were dissolved into aqeous solutions to facilitate a reaction and increase the ammount of reaction taking place. Without a solution, the two substances would not have reacted in a solid state. Solutions also increase the likeliness of the most possible reaction, because of its containment, as opposed to a gas, and the potion of the particles within, unlike a solid. Both reactants were dissolved into water in order to maximise the reaction and ensure it took place. The reaction was finally stirred for a mintute to maximise the reaction. The stirring added heat and motion, which is another form of heat, which allows more reactant to react properly. The heat increases the speed at which the particles move within the liquid, which leads to more collisions, and finally more reaction taking place. Finally, the original beakers and the funnel were washed down with water and passed through the filter to ensure all possible remaining reactant had been added to the apparatus. Refrences: 1. Nelson 11 Chemistry (2005) 2. http://ottawa.ca/en/env_water/water_sewer/water_wells/quality/facts/index.html 3. http://sargentwelch.com/pdf/msds/Strontium_Chloride_6-Hydrate_723.00.pdf 4. https://www.sciencelab.com/msds.php?msdsId=9923597 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Deducing the quantity of acid in a solution

    5 star(s)

    This reading needs to be more accurate than the reading of the conical flask. That's because the burette is the apparatus that we read to take into account the endpoint. As we need at least 3 concordant titres that are to within 0.1cm3, we need to be sure that we

  2. effects Concentration and Temperature on the Rate of Reaction

    This shows that there is again a positive correlation between concentration and reaction rate, as when the concentration of potassium bromide is increased, the reaction rate increases. This means that the reaction, with respect to potassium bromide, is also first order.

  1. Bleaching experiment. Estimation of available chlorine in commercial bleaching solution.

    to be reduced to chloride ions in reaction (2) provided that chlorine gas evolved in reaction(1) is easy to escape from the solution in the conical flask. Thus, in the excess amount of potassium iodide, it can reduce the maximum amount of chlorine gas.

  2. analysis of two commercial brands of bleaching solution

    reading on the burette 21.9 cm3 36 cm3 17.9 cm3 32.1 cm3 Volume of H2SO4 used 14.5 cm3 14.1 cm3 14.2 cm3 14.2 cm3 Average volume of sodium thiosulphate used = (14.1 + 14.2 + 14.2) ´┐Ż 3 = 14.167 cm3 14.5 cm3 is rejected because this is just a trial.

  1. The Effects of Strong and Weak Acids on the Order of a Reaction.

    An example of a strong acid would be Hydrochloric Acid which has almost 100% of its ions disassociated in water. A weak acid is defined as one that is only partially disassociated in water. An example of a weak acid would be Ethanoic Acid as only a small percentage of its ions can be disassociated in water.

  2. Making Copper (II) Sulphate Stock Solution evaluation

    x 2 = 0.001 x 100 24.954g = 4 x 10-3 % % uncertainty of the 1dm3 flask = 0.8 x 100 1000 = 0.08 % Therefore the total uncertainty = 0.08 % + 4 x 10-3 % = 0.084 % So, to work out the percentage error I need

  1. Extraction of Chlorine

    Therefore the products cannot react again. Uses of chlorine, sodium hydroxide and hydrogen in present-day industry Chlorine (Figure 2), sodium hydroxide (Figure 3) and hydrogen (Figure 4) are among the top ten chemicals produced in the world and are involved in the manufacturing of a wide variety of products used in day-to-day life.

  2. how much copper is in copper oxide

    Mass of copper x 100 Mass of copper (II) oxide 66 x 100 = 76.74 77% of copper in copper (II) oxide 86 INTERPRETATION The results show that there is a loss in weight in the copper when heated. This is proving that the hypothesis stated at the beginning is therefore correct, with a loss gained.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work