• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Physics coursework: Trolley experiment

Extracts from this document...

Introduction

Physics coursework: Trolley experiment Aim: The aim of this experiment is to find out whether or not the mass of a trolley effects its acceleration when traveling down a ramp kept at a fixed height. Planning Set up the experiment as shown above. Run the cart down the ramp once to make sure the cart runs in a straight line. Start the cart with its front wheels behind the starting line each time. The run finishes when the back wheels cross the finishing line. Three runs will be taken for each weight and three runs will be taken without a weight. We decided to take seven different observations, increasing the weight by 0.8kg each time Apparatus needed: 0.8kg weights (8)to add on to the cart) Ramp (1.5m in length) Cart (same cart used all the time) Books (to hold up the ramp at a fixed height) Stop watch (for timing the experiment) Sand bags (to stop the car at the end of each run) Safety: To keep this experiment safe, different precautions have to be taken. * Sand bags will be used to prevent the cart falling of the table * The ramp will be kept at a sensible height (17.5cm) ...read more.

Middle

And whether or not they are balanced. I predict hat the acceleration of the cart will be constant, as the forces are always unbalanced, but because of the different mass for each observation, the forces will always be different. Obtaining evidence The results shown below are the results for the 7 observations for the cart Weight of cart (kg) Time for 1st run (sec) Time for 2nd run (sec) Time for 3rd run (sec) Average time (sec) 0kg added 2.52 2.53 2.53 2.52 0.8kgs added 2.44 2.44 2.44 2.44 1.6kgs added 2.4 2.42 2.4 2.40 2.4kgs added 2.4 2.44 2.41 2.41 3.2kgs added 2.41 2.46 2.45 2.44 4kgs added 2.47 2.49 2.47 2.47 4.8kgs added 2.53 2.51 2.53 2.52 Each run was 1.5m in distance; the same cart was used and started from the same place, and finished in the same place. I worked out the average by adding the 1st, 2nd and 3rd run times, and then dividing the answer by 3. Here is a table to show the average speed for each weight added onto the cart: Weight on top of cart (kg) Average speed (m/s) 0 0.59 0.8 0.61 1.6 0.62 2.4 0.62 3.2 0.61 4 0.60 4.8 0.59 Calculations Here are the calculations I did to find out the average speed for each weight: 1) ...read more.

Conclusion

If the ramp were longer, the cart would have taken more time to complete one run. The observations did back up my prediction, and did back-up my prediction to a certain extent, but at The method we used gave accurate results. Even though the results were accurate, different factors could have still affected the speed, like whether or not the cart ran down the ramp in a straight line, or if the cart hit the sides If I had to do the experiment again I would use wider ramp so that there is chance of the cart hitting the sides of the ramp. The factor that would have probably had the biggest effect on the speed and time would have to be the stopwatch. It was extremely hard to stop the watch at precisely the right time, as it was hard to see when the back wheels crossed the finishing line. That would mean that the experiment is not 100%accurate, but that was one of the things our group found hard to control. To go on a step further in the experiment, I propose that we do exactly the same experiment, but also do 7 observations with the ramp at a different height, to see if the force that does slow the cart down can be determined. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Mechanics & Radioactivity essays

  1. Marked by a teacher

    AS OCR B Advancing Physics Coursework - Making Sense of Data

    4 star(s)

    The minimum and maximum time´┐Ż values were calculated by dividing the distance by the maximum and minimum average velocities of the whole fall respectively. As this error range is associated with time, the variable along the x-axis, a line of best fit through each of the maximum and minimum ranges was drawn to show the difference in gradients as before.

  2. Peer reviewed

    Aim:To find out whether or not the angle of the ramp affects the acceleration ...

    3 star(s)

    The mathematical techniques we will be using were derived from a mathematician called Pythagoras. In these works; angles and sides can be determined for other data in triangles. In this experiment; the ramp; its height and the floor form the 3 sides of this triangle; so we can use this data to calculate the angle of the ramp.

  1. Investigating Force, Mass and Acceleration using a Trolley

    will increase the acceleration of the trolley. III) The light gate used in the experiment might carry out small errors. The sensitivity of the light sensor and the width of the hole for light to enter the light gate might vary the length of cardboard that it is measuring from + or - the radius of the hole.

  2. Force of Friction experiment

    Until limiting static friction () was reached, the block began to slide and the reading (representing ) remained basically constant. Experimental value of is much smaller than . Theoretically, should be only slightly smaller than. This may be to error. If heavier blocks are used, the difference between and might be smaller.

  1. Investigating the factors affecting tensile strength of human hair.

    This though, would affect all my results, as all hair samples had selotape on them to hold them together at the top and at the bottom. So, this limitation would affect all hairs making it a very weak limitation. My conclusion will not be affected as this limitation affects all hairs.

  2. OCR B Advancing Physics Physics Practical Investigation Coursework Investigating Simple Harmonic Oscillations

    Safety: Wires were kept away from water at all times. Mass (kg) Damped Average Resonant Frequency (Hz) Damped Average Amplitude of Resonant Frequency (Hz) 0.10 2.00 1.53 0.15 1.80 1.83 0.20 1.65 2.00 0.25 1.45 2.33 0.30 1.39 3.15 0.35 1.31 3.57 0.40 1.23 4.07 See appendix for full table of data, including anomalous results.

  1. The target of my coursework is to find the amount of g acting on ...

    2.29 2 0.3149 0 0.09916201 50 1.72 1.5 0.2325 0 0.05405625 50 0 0 0 0 0 The results suggest that as the angle and heights increase correspondently, the final velocity and acceleration increase also. Moreover, when the height decreased to below 1.5 cm the effects of friction were too

  2. A few factors (the gradient/height of ramp, the mass of the object, friction, gravity, ...

    I will do the whole experiment on the ground because this can stop things from falling down the table and hit people's feet.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work