• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

Preparation of haloalkane. The purpose of this experiment is to prepare 2-chloro-2-methylpropane from methylpropan-2-ol

Extracts from this document...


Date: 20/9/2011 Exp. No.: 21 Title: Preparation of a halogenoalkane Aim: The purpose of this experiment is to prepare 2-chloro-2-methylpropane from methylpropan-2-ol Introduction: In this experiment, 2-chloro-2-methylpropane will be prepared from methylpropan-2-ol and hydrochloric acid. This reaction takes place at room temperature as methylpropan-2-ol is a tertiary alcohol which undergoes substitution very readily. Zinc chloride could be added to be a catalyst to increase the reaction rate, but for tertiary alcohol the reaction rate is already fast enough. The equation of the reaction is: The synthesis is a nucleophilic substitution reaction. The OH group is being substituted by a chlorine ion. Purification process includes removal of acid, dehydration and distillation. The product is purified by using the separation and removing the excess HCl with saturated sodium hydrogencarbonate solution followed by dehydrating with anhydrous sodium sulphate and finally distillation. Apparatus and chemicals: Apparatus: Separation funnel with stopper, 10cm3 and 25cm3 measuring cylinders, electronic balance, stands and clamps, 0-100oC thermometer, quick-fit apparatus for distillation, Bunsen Burner, tripod, wire gauze, boiling tubes with stopper, anti-bumping granules, safety spectacles Chemicals: 9cm3 of 2-methylpropan-2-ol 2g of anhydrous sodium sulphate granules 20cm3 concentrated hydrochloric acid 10cm3 saturated sodium hydrogencarbonate solution Precautions: 1. 2-chloro-2-methylpropane and 2-methylpropan-2-ol are flammable. So, these liquids must be kept away from direct flame. Flammable 2. Concentrated hydrochloric acid is very corrosive and there are HCl fumes above the concentrated HCl solution, so we should wear safety spectacles during the whole experiment and transfer of acid should be done in fume cupboard. ...read more.


1. Concentration of nuclephile Substitution is preferred when a concentrated nucleophile is used. In this experiment, concentrated acids were used, so the concentration of the nucleophiles is very high which favours elimination. 2. Temperature High temperature favours elimination reaction, that is one of the reasons why we add concentrated HCl little by little instead of adding 20cm3 altogether, as the reaction is exothermic which release larger amount of heat, then the rate of reaction of elimination may increase (although it is still very slow). The other reason for adding concentrated HCl little by little will be discussed later. 3. Distillation of cyclohexene from the reaction mixture when it was formed. This is important because the cyclohexene formed may react with water to form back cyclohexanol. Using high temperature can ensure that cyclohexene reaches its boiling point immediately after formation and being distilled out. 4. Polarity of the solvent. Low polarity solvent favours elimination which high polarity solvent favours substitution. In this experiment, we used water as a solvent which is of a high polarity, so this increases the rate of substitution. 5. Structure of the reactant 3o carbon increases the stability of the carbonium ion formed in the intermediate. With the SN1 pathway, a carbonium ion is formed as an intermediate. The carbonium ion has higher stability with a tertiary carbon because of inductive effect. R groups (CH3 in this experiment) ...read more.


3. We were only using a measuring cylinder to measure each reagent, which was not quite accurate. Therefore, there might be a maximum error of 0.25cm3 as the measuring cylinder only had markings every 0.5cm3. When that measuring cylinder was used to measure 9.0cm3 of 2-methylpropan-2-ol, the maximum percentage error was � 100% = 2.78% In addition, the measuring cylinder was used to measure volumes 3 times. This might contributed quite a lot on the error in this experiment. Further experiments: Adding AgNO3 solution With a little bit of left-over product (2-chloro-2-methylpropane) in a boiling tube, a few drops of AgNO3 were added into the boiling tube to test for whether the product is a halogen compound. After adding the AgNO3 solution, white ppt. was formed which confirmed that the product was actually a chloro compound. This can be confirmed as AgCl(s) is white in colour, AgBr(s) is pale yellow, while AgI(s) is yellow. After the ppt. was formed, the boiling tube was brought to direct sunlight. This caused the white ppt. to turn grey and slightly purple. This was actually a thermal decomposition and the equation is: 2AgCl 2Ag + Cl2 White Grey The product was slightly purple because the silver was not evenly deposited. There were many cavities which diffracts lights, so a slightly different colour may be observed. However, this test is slightly not too accurate because carboxylic acids have been known to react in this test, giving false positives. Reference: http://chemistry2.csudh.edu/rpendarvis/SN1Elim.html http://www.chemguide.co.uk/mechanisms/nucsubmenu.html http://www.chemtube3d.com/Elimination%20-%20E1.html http://www.chemhelper.com/e1.html http://www.wellesley.edu/Chemistry/chem211lab/Orgo_Lab_Manual/Appendix/ClassificationTests/halide.html http://www.chem.ucla.edu/~bacher/General/30BL/tips/Sepfunnel.html http://en.wikipedia.org/wiki/Tert-Butyl_chloride http://en.wikipedia.org/wiki/Silver_chloride http://www.sciencelab.com/msds.php?msdsId=9927134 http://www.organic-chemistry.org/namedreactions/nucleophilic-substitution-sn1-sn2.shtm http://www.chem.ucla.edu/~bacher/General/30BL/tips/Sepfunnel.html ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Organic Chemistry essays

  1. Marked by a teacher

    Reactions of aldehydes and ketones. The purpose of this experiment is to compare ...

    5 star(s)

    sulfate, as bidentate ligands giving the bistartratocuprate(II)4- complex. The tartarate ions, by complexing copper prevent the formation of Cu(OH)2 from the reaction of CuSO4.2H2O and NaOH present in the solution. The Copper (II) ion is reduced to copper (I) oxide which is a red ppt, and in some cases, to copper metal (copper mirror).

  2. The preparation of cyclohexene from cyclohexanol

    This whole setup was clamped. 5. 2 rubber tubes were connected to condenser's water in (near the head) and the water out (near the tip). 6. Finally a clean & dry conical flask (put in the ice bath) was placed to near the tip of the condenser to collect the distillate.

  1. The aim of this experiment is to produce Aspirin. This is an estrification in ...

    Recrystalised aspirin Pure aspirin . Forward titration (10) (11) (12) (13) Introduction This is a scientific analytical method used to determine the strength of a solution, or the concentration of a substance in solution. It allows you to determine the precise quantity of reactant in the titration flask.

  2. Hydrolysing Organic Halogen Compounds. The purpose of this experiment is to find out ...

    1-chlorobutane, 2- chlorobutane, 2-chloro-2-methylpropane The difference between 1-chlorobutane, 2-chlorobutane and 2-chloro-2-methylpropane is the level of substitution of the halogen attached atom. 1-chlorobutane has only one alkyl group attached to the 'Halogen attached carbon atom', therefore it is a primary haloalkane.

  1. Identification of an Unknown Organic Compound

    Keep well away from source of ignition. Make sure you clean any spillages as they can dry out and could be potentially explosive. Any contact made should be rinsed with water. * Methanol is toxic and highly flammable. Make sure it's kept away from any source of ignition.

  2. Finding the concentration of an acid sample

    So we can answer he aim by sing that the concentration of the known acid is 0.1mol dm-3 (1 significant figure) Evaluation As I have now got my results to truly evaluate them and see weather they are truly reliable I have calculated the percentage errors of the equipment I used.

  1. Comprehensive and Detailed Chemistry notes

    nitric acid which contributes to acid rain Ozone Decomposition of NO2 in UV light Causes respiratory problems Sulfur dioxide Combustion of coal and oil Irritating, poisonous gas * Describe the formation of a coordinate covalent bond A coordinate covalent bond is formed when one atom provides both electrons to form the shared bonding pair.

  2. Comparison between Cyclohexane and Cyclohexene

    The bromine water test is one of the chemical tests to differentiate alkanes and alkenes. In a test tube of cold acidified potassium manganate (VII), a type of oxidizing agent with cyclohexene, cyclohexa-1,2-diol is formed with the disappearance of purple colour of the acidified potassium manganate (VII).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work