• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Preparation of Propanone

Extracts from this document...

Introduction

EXP4 - Preparation of Propanone Aim: The purpose of this experiment is to synthesis propanone (58 g/mol) from propan-2-ol (60 g/mol). Principle: This synthesis is an oxidation reaction of secondary alcohol. Secondary can be oxidized by either acidified potassium dichromate (VI) or acidified potassium permanganate (VII). In our synthesis, we oxidize propan-2-ol which is the smallest secondary alcohol available; its oxidation will form a propanone (commonly called acetone) according to the below equation. The most common reagent used for oxidation of secondary alcohols to ketones is chromic acid, H2CrO4. Chromic acid is produced in situ by reaction of potassium dichromate (VI), sulphuric acid and water. K2Cr2O7 + H2O + 2H2SO4 ? 2 H2CrO4 + 2 NaHSO4 The oxidation mechanism is outlined below, the propan-2-ol and chromic acid produce a chromate ester, which then reductively eliminates the Chromium species and produce the propanone product. Method: The experiment is a oxidation reaction where a secondary alcohol (propan-2-ol) is oxidized by acidified potassium dichromate. The reaction readily occurs in room conditions. The product is propanone and the reaction stops at that stage, no catalyst is needed for the reaction and the reaction completes within a few minutes. The reaction is started by adding acidified potassium dichromate to the alcohol. The colour of the oxidizer is initially orange and the colour changes to dirty green upon mixing. ...read more.

Middle

Calculations The predicted amount of products formed = 0.0528 mol X 58 g mol-1 = 3.064 g However, product loss due to incomplete reaction, side reactions, evaporation, spillage or residue on glassware could significantly reduce the percentage of yield. Number of mole of actual product formed = 1.93 g / 58 g mol-1 = 0.0332 mol The actual product formed has 0.0332 mol. Thus the percentage yield was about 63.0% of the theoretical value. Discussions Characteristics of this experiment This experiment is a oxidation reaction of secondary alcohol which its mechanism is mentioned in the principle section. The oxidation of secondary alcohol always produces a ketone while that of a primary alcohol, a aldehyde is formed. This experiment choose a secondary alcohol to demonstrate the production of ketone is a wise choice as the oxidation process is stopped at the ketone stage, where if a primary alcohol is used, the reaction will first produce an aldehyde. However, the aldehyde will continue to be oxidized to a carboxylic acid. This oxidation requires a strong oxidizing agent such as potassium permanganate, potassium dichromate or other agents containing Cr(VI). Heating is applied to quicken the reaction. This method is the most common known method for preparing ketones in the laboratory, however there are numbers of other methods which ketones could be produced: * Ketones are also prepared by Gem halide hydrolysis. ...read more.

Conclusion

This is a carbonyl-protecting reaction. * reaction of RCOR' with sodium amide results in cleavage with formation of the amide RCONH2 and the alkane R'H, a reaction called the Haller-Bauer reaction * Electrophilic addition, reaction with an electrophile gives a resonance stabilized cation. * the reaction with phosphonium ylides in the Wittig reaction gives alkenes * reaction with water gives geminal diols * reaction with thiols gives a thioacetal * reaction with a metal hydride gives a metal alkoxide salt and then with water an alcohol * reaction of an enol with halogens to ?-haloketone * reaction at an ?-carbon is the reaction of a ketone with heavy water to give a deuterated ketone-d. * fragmentation in photochemical Norrish reaction * reaction with halogens and base of methyl ketones in the Haloform reaction * reaction of 1,4-aminodiketones to oxazoles by dehydration in the Robinson-Gabriel synthesis * reaction of aryl alkyl ketones with sulfur and an amine to amides in the Willgerodt reaction Ketones are often used in perfumes and paints to stabilize the other ingredients so that they don't degrade as quickly over time. Other uses are as solvents and intermediates in chemical industry. Examples of ketones are acetone, acetophenone, and methyl ethyl ketone. Notes on experiment techniques When handling corrosive concentrated acids such as the concentrated sulphuric acid, a dropper is recommended for its transferral. Addition of concentrated sulphuric acid to aqueous potassium dichromate in this experiment should be done slowly to avoid spillage due to the generation and local acumination of heat. ?THE END? ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Organic Chemistry essays

  1. Marked by a teacher

    Preparation of propanone from propan-2-ol

    5 star(s)

    An iced water bath was prepared by adding some ice cubes to a beaker with tap water. 3. 3 cm3 of propan-2-ol was added into a clean pear shape flask and the flask was placed into the iced water bath.

  2. Marked by a teacher

    Reactions of aldehydes and ketones. The purpose of this experiment is to compare ...

    5 star(s)

    With Fehling's solution 1. About 1 cm3 of Fehling's solution A into a test tube. 2. Fehling's solution B was added drop by drop until the precipitate just redissolved. 3. About 7 drops of ethanal was added into the test tube and the tube was shook gently.

  1. The preparation of cyclohexene from cyclohexanol

    acid in the pear shaped flask, why do we have to add a few chips of pumice stone into the flask? As the few chips of pumice stone added into the flask are act as anti pumping granules to prevent over heat and vigorous reaction.

  2. The aim of this experiment is to investigate the enthalpy change of combustion for ...

    The alcohol spread out and its surface area increased which may have effected the results, the alcohol was also not contained completely and would have been able to evaporate quite easily. The volume of water used was also too large for the small amount of alcohol being combusted, and there was no real notable increase.

  1. Find the enthalpy change of combustion of a number of alcohol's' so that you ...

    Therefore it would prevent differences to occur in the measuring of the wick length, prevent combustion of the wick, prevent soot collection on the gauze because the wick and gauze are not used in a bomb calorimeter. This would result in more complete combustion because heat energy from the fuel

  2. The aim of this experiment is to produce Aspirin. This is an estrification in ...

    It is followed by elimination because a small product is lost during the process. When the organic compound is made it may contain by-products, therefore it needs to be purified. This is done by recrystalisation by using hot water to dissolve aspirin.

  1. Comprehensive and Detailed Chemistry notes

    the stratosphere, ozone molecules absorb UV radiation -- UV radiation is harmful to living cells -- UV-B and UV-C radiation is absorbed -- UV-A is allowed to reach the Earth -- UV-A promotes production of vitamin-D in our skin -- Ozone is naturally formed in stratosphere: O2(g) + UV� 2O.(g)

  2. The aim of this experiment is to obtain the rate equation for the reaction ...

    9. (Obtaining values for the concentration of iodine) 6 experiments were done for the whole class and our group was responsible for doing experiments a, f and g (varying volume of HCl added) 10. HCl was added to a burette and propanone was added to another burette. 11.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work