• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Resistance Investigation

Extracts from this document...

Introduction

Physics coursework Hypothesis-I predict that the resistance of the resistors can be found by dividing the voltage by the current through the resistor. It can be found by finding the gradient of the best-fit line on the graph of voltage against current. This will happen because the voltage and current are proportional so voltage will equal constant current. The constant term is the resistance so the resistance is voltage divided by current. The gradient on the graph can be formed by dividing the unit on the y-axis by the unit on the x-axis which will be voltage divided by current or on the filament lamp graph it will be current divided by voltage. The gradient will depend on the resistance of the resistors. Ohm's law will be followed if the graph is a straight line through the origin, so this can be used to prove Ohm's law is valid. Background Information- Current is the flow of charge. ...read more.

Middle

Copper is a good conductor and as temperature increases, the resistance of a wire increases. Voltage graphs are different like the graph of an ohmic conductor is a straight line that passes through the origin; this shows that it obeys Ohm's law. The graph of the filament lamp is a non-ohmic conductor as it is a curve and clearly does not obey Ohm's law. As more current flows, the metal filament gets hotter and so its resistance increases this means the graph gets flatter. A thermistor is used in electronics and is made of a semi-conductor substance. As more current flows, the thermistor gets hotter and so its resistance decreases so the graph gets steeper. Method - Connect a power supply to the resistor and an ammeter in series and connect a voltmeter. Measure the current at volt intervals of 0.5 up to 5 volts. The test will be kept fair by making sure the temperature is kept constant, make sure that current is measured every 0.5 volts and other ways of keeping the test fair. ...read more.

Conclusion

Yes the temperature is kept constant as the same wire is used. The blue resistor needs the most energy as it has the highest resistance. The Filament lamp graph is a steep curved shape. It is this shape because the voltage increases as the current does not increase as much. The filament bulb has a high resistance so the electrons are stopped often and a lot of energy is released. This causes the filament to become hot and begins to glow, releasing light. The heat then causes the resistance to increase even more because the particles are vibrating faster and will stop the electrons more often. Therefore, a higher voltage is needed to allow the same current through or a lower current will pass at the same voltage. The filament lamp does not obey ohm's law, as the voltage across the bulb is not proportional to the current. This proves that ohm's law is correct in saying voltage and current are proportional at a constant temperature as the filament bulb gets hotter and does not obey ohm's law, therefore, it is not an ohmic conductor. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    temperature of a thermistor and the resistance across it I can conclude that my prediction was correct. A thermistor is a semi-conductor and so this means that as the temperature across it and the amount of energy being transferred into the electrons increases the resistance decreases.

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    This means the maximum temperatures reached would have been for results 2, 64degrees and for results 3, 52.5degrees. These produce vales for the s.h.c of aluminium to be; Results 2- 1140Jkg-1C-1 Results 3- 876Jkg-1C-1 These values are both nearer the actual value of the aluminium.

  1. Investigating the effect of 'length' on the resistance of a wire

    doubling the number of collisions of electrons with metal atoms as well. This proves that my results support the prediction that I have made in the planning section. In graph No2 most of the points lie on the line of best fit which means that my results were considerably accurate.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    This increases resistance. So whatever the amount of electrons provided, the current will decrease because the resistance has increased. In semiconductors the conductivity varies from the types of semiconductors. There are two types intrinsic and extrinsic semiconductors. This way there is no definite rule for these materials.

  1. Is polymer electronics the future of TV screens

    As a result, polymer materials creates a new platform that makes it possible to produce high volumes of thin and flexible electronic devices covering the same full range of applications as conventional silicon-based electronic technology. Production Process The main advantage of polymer electronics compared with conventional electronics is the simplicity with which the polymer electronic devices can be produced.

  2. physics sensor coursework

    However, the resistivity of semi conductors decreases with increasing temperature. This is as the heat energy allows more electrons to break free from their atoms, and hence join the conduction band. The same can be applied to the light intensity.

  1. How different factors affect the resistance of a wire

    to use lengths of wires ranging from 20cm long to 100cm, as this will give me a large enough range to obtain sufficient results for my conclusion. It will be harder to go over 100cm as then two rulers will have to be put next to each other, and this is not at all reliable.

  2. Find The Internal Resistance Of A Power Supply

    were not very reliable because the current increases and voltage decreases were fairly large that an accurate graph of current against voltage could not be plotted. Only four current and voltage reading were taken at each voltage setting on the power supply which meant that a small range of results could be plotted on a graph.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work