• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Resistance is a measure of how hard it is to get a current through a component at a particular potential difference or voltage.

Extracts from this document...

Introduction

Year 10 Coursework-Resistance Assessment Resistance is a measure of how hard it is to get a current through a component at a particular potential difference or voltage. Potential difference , current and resistance are related using this formula: Potential Difference(volt, V) = Current (ampere, A) x Resistance (ohms) Prediction: I predict that the shorter the resistance wire, the less resistance there will be, I also think that this will mean the lower the resistance the higher the current will be. Hypothesis: I think what I have put in my prediction is true because the greater the resistance of a substance the less current it will allow to flow through the given voltage. We can use an equation to work out the amount of current able to flow through a circuit at any one time Current = Voltage Resistance I think the less resistance wire used, the easier and quicker the current will be able to flow through the circuit. This is because their will be less of a resistance stopping the electrical current getting through. ...read more.

Middle

I could set the amp meter or voltmeter to the wrong setting which could make my results inaccurate. I think that the less resistance wire used, the easier and quicker the current will be able to flow through the circuit. To make my planning easier I have done work even before I wrote this assessment, I have found out that resistance is a measure of how hard it is to get a current through a component at a particular potential difference or voltage, I learnt this from the AQA Double Award Modular Science- The Tested Modules (Higher Tier Book). Also I found out that Potential Difference(volt, V) = Current (ampere, A) x Resistance (ohms) Is the way to work out how current and resistance are related. Fair Test: To make sure the test is fair I will keep the voltage on the power pack the same throughout the experiment. Also I will make sure the readings on the voltmeter and amp meter are always recorded how each metre says and not change them to make the results more accurate. ...read more.

Conclusion

I measured the resistance wire to the 200 cm and used a crocodile clip to connect it to the meter ruler. I then turned the power pack on and recorded the readings on the amp meter and voltmeter as shown in my tables of results. I repeated the experiment for the other resistance wire measurements. I did each measurement twice to make my results more accurate. To work out the average for each length of resistance wire I took both sets of results and first looked at the 200cm results I used both them and did this formula to work out the resistance: R= V divided by C I then repeated the formula to work out the other results. I then recorded the averages on my table. Tables Of Results Length (cm) 200 190 180 170 160 150 Voltage (V) 3.56 3.56 3.53 3.48 3.44 3.39 Current (amps) 0.39 0.43 0.47 0.50 0.54 0.59 Resistance (ohms) 9.12 8.27 8.27 6.96 6.37 5.74 Length (cm) 200 190 180 170 160 150 Voltage (V) 3.54 3.57 3.55 3.47 3.44 3.30 Current (amps) 0.39 0.95 0.46 0.49 0.54 0.50 Resistance (ohms) 9.07 8.30 7.11 7.08 6.57 6.37 Averages 9.095 8.285 7.51 7.12 6.37 6.055 Diagram Of Apparatus Jamie Noke 10 ANS Yr10 coursework Physics Mr Tebay 10S ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Thermistor Coursework

    When I am deciding what fixed resistor to use in my sensor I will think about the factors listed below. I have decided that I shall use a 1000? thermistor. This is because they are fairly common, and should the thermistor fail it is easily interchangeable.

  2. resistivity if a nichrome wire

    This means that the length which the voltage had been measured was different, therefore affecting my results. In future, if the experiment were to be repeated a needle or a thinner crocodile clip could be used as a connection, as it would help assure pinpoint accuracy.

  1. Relationship between the current and voltage.

    As the resistance, of the, " wire wound resistor," will be a constant, I expect a straight line graph. There I also expect the resistors to be applicable to ohms law. This is, as the temperature of the resistors will be kept constant, as the voltage will not be very high.

  2. Investigating how temperature affects the resistance in a wire

    The x-axis error bars only go lower than the associated result value. This is used to represent the fact that at any temperature along the scale used in the experiment, the actual temperature could only be the temperature or lower due to the temperature drop effect.

  1. Investigating the effect of 'length' on the resistance of a wire

    The resistance of a uniform conductor depends on the length, the cross-sectional area and the type of material. * The longer the length of a conductor, the greater its resistance. * The narrower a conductor is, the greater its resistance.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    The reading on the voltmeter can keep the values in check. The readings will then be taken down in a table as shown below. There have to be 10 readings and the current should not exceed more than 1 A, as this will cause the heating effect.

  1. Find out whether a longer wire or a shorter wire will have more or ...

    The electrons flow from the negative terminal to the positive terminal. The Ammeter measures the current (in amps) flowing through the component. The ammeter must be placed in series. It can be put anywhere in the main series circuit, but never in parallel like the voltmeter.

  2. Observe and record the brightness, voltage difference (the potential difference between two points in ...

    You must measure the potential difference with at least five points shown in the diagram. 4. Record results. 5. Repeat steps 1-4 using Circuit 2,3,4, and the additional 5. Results (on attached sheet) Analysis As we can see in our first, second and third circuit, the current of the circuit stays the same through out.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work