• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Single Phase Transformer (Experiment) Report.

Extracts from this document...

Introduction

Electrotechnology Coursework Single Phase Transformer (Experiment) Report. Aims. The aims of this experiment are to calculate the turn's ratio of the transformer (in the open and short circuit test), calculate the inductive reactance and rm from the values in the open circuit test. In the short circuit test calculate R1 and X1. Then finally in the load test calculate voltage regulation and the efficiency compare these results to the voltage regulation and efficiency from the equivalent circuit. I will then predict the voltage regulation and efficiency if the load used above had a power factor of 0.8 lagging. Objectives. To determine the approximate equivalent circuit of a single-phase transformer. This will enable me to calculate all the different parameters in the open-and short- circuit tests. Enabling me to predict results for an actual circuit and also compare values between actual and equivalent circuits to see how accurate the estimation or prediction is. Equipment. TecQuipment electrical machines teaching unit NE8010 or NE8013, with the B-phase transformer (EMTU-TT01) on the bench. One feedback electronic wattmeter, one Multi-range moving-iron ammeter and one instrument voltage transformer. Electrical wires where used for the connections between the components of the circuits. Theory and Introduction. A Transformer is a device that transfers electric energy from one alternating-current circuit to one or more other circuits, either increasing (stepping up) or reducing (stepping down) the voltage. Transformers are employed for widely varying purposes; e.g. to reduce the voltage of conventional power circuits to operate low-voltage devices, such as doorbells and toy electric trains, and to raise the voltage from electric generators so that electric power can be transmitted over long distances. Transformers are widely used in power systems for the stepping up the generated voltage from about 20kV to 400kV for efficient transmission and then down again in stages (typically 132kV, 33kV and 11kV) for distribution to industrial consumers and finally to 230V for domestic purposes. ...read more.

Middle

My results show that when I calculate the voltage regulation with the experiment values (actual circuit), the change in the secondary voltage between no-load and full-load is 4.35%. This value is 0.35% greater than the value calculated using the equivalent circuit parameters. So therefore the voltage regulation calculated with the equivalent circuit formula is 4.00%. The Efficiency values are the other way around. For the experiment values used in the efficiency equation, the efficiency value is 94.9%. This value is less than the efficiency value produced when the equivalent circuit parameters are used in the equation. This value is 96.0%. My values are very close to the correct trend from my knowledge. With the circuit not being exactly perfect due to losses, such as power losses due to heating in the wires around the circuit. There are also eddy currents and hysteresis within the core of the transformer. All these losses add up to alter the efficiency of the circuit. With the calculations from the actual circuit the efficiency was calculated and it was lower then the efficiency calculated using the equivalent circuit formula. I can see that the actual circuit formula takes all the losses into account, due to the value of the voltage recorded is used in the formula. With the equivalent circuit parameters being only estimation, this leaves with the opinion of it being less accurate, with also the knowledge of the formula not taking into account the heat losses and power losses in the wire, which is bound to affect the efficiency of the circuit performance. The voltage regulation difference shows that in the equivalent circuit the change from voltage with no load to voltage with a load has a smaller change (smaller percentage) therefore the circuit is more efficient. So with the actual having a larger change (larger percentage) then the efficiency will be less. Areas of Application of Transformers. ...read more.

Conclusion

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Electrical & Thermal Physics essays

1. ## Thermistor Coursework

I think that this is a human error. When I took the results, I waited for the temperature of the water drop until it was the temperature that I wanted, then I adjusted that the potential difference across the lab pack, if necessary so that it was 5v, to provide a fair set of results.

2. ## Objective: To use a search coil and a CRO to investigate the magnetic ...

Thus, the result agree with the equation , where �0 is the permeability of free space and is the number of turns of the solenoid. 3. It is necessary to place the search coil at the same level and perpendicular to the straight wire.

1. ## A. Study of phase difference between voltage and current in series RC ...

Because if the cannel 1 of the CRO is connected across the capacitor only, it just shows the trace of VC but not applied voltage, and the trace will not change whether changing the resistance of the resistor. 2. The channel 2 of the CRO could give the current through

2. ## Coulombs Lab Report

The amount of time we had before the electron charges leapt off the pith ball or the acetate strip was incredibly small. This problem was magnified by the fact that Belgium is indeed a very wet country, that at a time like this is hardly ever dry and it makes

1. ## The aim of the experiment is to verify the maximum power theorem and investigate ...

All wooden blocks were weighed by the beam balance and labeled with numbers. 2. The scale of the spring balance was set properly to zero. 3. The sand paper was placed on the table. 4. A wooden block was placed on the table.

2. ## Sensors Project Report

which presents the changes that has been made by the different amount of paper Precautions - make sure all the wires are connected correctly and are properly insulated before use, to reduce the chance of being electrocuted - make sure all the apparatus works properly (e.g.

1. ## Energy Efficiency Experiments

Experiment Mass(g) 0.24 Temp of water (°c) 21 Voltage(V) 8.6 Current(A) 2.73 After 4 minutes Temp of water (°c) 27 Final mass(g) 0.17 Temp difference (°c) 6 Mass difference(g) 0.07 â¯ http://glossary.periodni.com/images/calorimeter.jpg Distinction The most efficient out of all the experiments was experiment 4 because a small amount of electrical energy produced kinetic energy + heat energy which caused gravitational potential energy + more heat energy.

2. ## Diode Application in Rectifier Circuits

In the negative cycle of the input AC signal, the diode is forward biased and conducts, charging the capacitor to the peak positive value. During the positive cycle, the diode is reverse biased and thus does not conduct. The output voltage is therefore equal to the voltage stored in the capacitor plus the input voltage gain. • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 