• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Springs and Simple Harmonice Motion.

Extracts from this document...


Springs and Simple Harmonice Motion. The aim of my coursework is to investigate the properties of a spring when masses are suspended from it undergoing simple harmonic motion. The experiment was set up as follows: The length of the spring without a mass suspended from it was measured. A 0.05kg mass was then suspended from the spring and the spring was measured again. The length without mass was 0.164m and the length with 0.05kg suspended was 0.249m. Using this data I can work out that the extension of the spring was 0.085m (0.249 - 0.164). By using the formulas: F=ke and F=mg (F = Force(N), k = Spring constant, e = Extension(m), m = Mass(kg), g = acceleration due to gravity(ms-2)), and taking g as equal to 9.81 I can work out the spring constant (k) ...read more.


However, as I have only done this experiment one time and not changed the mass at all I cannot be very sure that my results are accurate. To be more certain of the accuracy of the spring constant I worked out I changed the masses suspended from the spring and recorded the length of the spring again. The masses I used overall can be seen in the table below along with the results. As well as measuring the length of the spring as more weight was suspended from it I also measured the length as the weights were removed, in reverse order. This can also be seen in the table below. ...read more.


The Mass column of the table tells us how much mass was suspended from the spring. As you can see there were 7 different masses used. L1 is the length of the spring at the top of the oscillation and L2 is the length at the bottom of the oscillation. I added another column to the table to show the mean average time for ten oscillations. I then divided the average time for 10 by 10 to get the average time for 1 oscillation. From this information I was able to plot a graph of average time for 1 oscillation against the mass used. The graph I plotted is shown below: From this graph I can easily see that as the mass suspended from the spring is increased the time for 1 oscillation increases. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Marked by a teacher

    Wave Coursework

    3 star(s)

    � 2 0.5 0.242 0.229 0.007 1.0 0.381 0.362 0.009 1.5 0.437 0.420 0.009 2.0 0.493 0.476 0.009 2.5 0.542 0.530 0.006 3.0 0.586 0.556 0.015 3.5 0.625 0.608 0.008 4.0 0.645 0.633 0.006 * data is an outlier/anomalous compared to the others but will still be included, hoping it does not have much affect.

  2. Determine the value of 'g', where 'g' is the acceleration due to gravity.

    Length of the spring (m) Extension (m) Time for 10 oscillation (s) Time period (s) (Time period)2 (s2) 0 0.021 0 0 0 0 0.050 0.032 0.011 2.68 0.268 0.072 0.100 0.051 0.030 3.98 0.398 0.158 0.150 0.067 0.046 4.93 0.493 0.243 0.200 0.086 0.065 5.50 0.550 0.303 0.250 0.105

  1. Physics - The aim of this practical investigation was to obtain a value for ...

    4.50 gradmin mean = 4.51 + 4.50 = 4.505 2 gradmean = 5.2545 + 4.5050 = 4.87975 2 T2 = 4?2 . m and, grad = T2 k m So, grad = 4?2 k So, k = 4?2 gradmean So, k = 4?2 = 8.09 Nm-1 4.87975 Conclusions Experiment 1

  2. The Stiffness Of Springs

    I had to be careful not to drop any of the weights onto my own or other people's fingers or toes. I also wore safety goggles in case a spring flew and hit me in my eye which was a possibility.

  1. Finding the Spring Constant (k) and Gravity (g) using Hooke’s Law and the Laws ...

    Divide time by 20 ( to get the period. All results should be recorded to 3 d.p.) and record in the table. 8. Place next mass on scales and record mass in the table (Note - when adding a mass to the table, the value should be added to the previous mass.

  2. Simple Harmonic Motion of a mass-spring system.

    From the graph, we can obtain the value of force constant k as k = Nm-1 and the effective mass of the spring as it is the intercept on the m-axis. Procedure: A. Setting up the mass-spring system 1. The light spring was hung from the horizontal bar.

  1. An Experiment To Examine the Effect of Springs In Parallel

    if the original extension is 20cm. Then the extension for 2 springs in parallel will be 20/2 = 10 From what I have said in my prediction, I predict that a graph for number of springs against extension will look like this.

  2. Waves and Cosmology - AQA GCE Physics Revision Notes

    Double the temperature of a surface means the power radiated by each square meter of the surface is 16 (24) times greater. * Using the spectrum of a star, we can find its luminosity as we can determine: - The wavelength at the maximum intensity occurs - The temperature of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work