# Springs and Simple Harmonice Motion.

Extracts from this document...

Introduction

Springs and Simple Harmonice Motion. The aim of my coursework is to investigate the properties of a spring when masses are suspended from it undergoing simple harmonic motion. The experiment was set up as follows: The length of the spring without a mass suspended from it was measured. A 0.05kg mass was then suspended from the spring and the spring was measured again. The length without mass was 0.164m and the length with 0.05kg suspended was 0.249m. Using this data I can work out that the extension of the spring was 0.085m (0.249 - 0.164). By using the formulas: F=ke and F=mg (F = Force(N), k = Spring constant, e = Extension(m), m = Mass(kg), g = acceleration due to gravity(ms-2)), and taking g as equal to 9.81 I can work out the spring constant (k) ...read more.

Middle

However, as I have only done this experiment one time and not changed the mass at all I cannot be very sure that my results are accurate. To be more certain of the accuracy of the spring constant I worked out I changed the masses suspended from the spring and recorded the length of the spring again. The masses I used overall can be seen in the table below along with the results. As well as measuring the length of the spring as more weight was suspended from it I also measured the length as the weights were removed, in reverse order. This can also be seen in the table below. ...read more.

Conclusion

The Mass column of the table tells us how much mass was suspended from the spring. As you can see there were 7 different masses used. L1 is the length of the spring at the top of the oscillation and L2 is the length at the bottom of the oscillation. I added another column to the table to show the mean average time for ten oscillations. I then divided the average time for 10 by 10 to get the average time for 1 oscillation. From this information I was able to plot a graph of average time for 1 oscillation against the mass used. The graph I plotted is shown below: From this graph I can easily see that as the mass suspended from the spring is increased the time for 1 oscillation increases. ...read more.

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

## Found what you're looking for?

- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month