• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Stopping distance Investigation.

Extracts from this document...

Introduction

PLAN:

The aim of this experiment is to investigate the factors that affect the stopping distance of a vehicle. In order to do this, I must take into account the forces that act upon a vehicle when it attempts to brake. The results which I gain from doing this experiment should be representative of what the results would be like if I were to investigate this using a real car. Obviously this is not an option, and so I will have to stimulate these conditions as best I can whilst using the trolley instead.

METHOD:

To conduct this investigation, I will use a trolley, and change the mass of it by 1kg each time. The ramp that the trolley runs down will be supported by a tub, which will allow the height and angle of the ramp to remain constant. I will let the trolley go, and run freely down the ramp until it hits the break and comes to a halt. I will then record the stopping distance – the distance from the position of the break to where the vehicle has stopped. As the trolley goes down the ramp, it will pass through the light gate, registering a time as it does. Be recording this time, I will be able to draw graphs, and I will also be able to find out if the mass of the vehicle affects the speed at which the trolley goes down the ramp.

...read more.

Middle

FAIR TEST:

There are certain ways in which I can ensure that this is a fair test. For example, the height and angle of the ramp will be kept constant throughout, and the metre rules will always be in the same position. The brake will always be placed in the same place, and I will always measure starting and stopping distances from the same point on the trolley.

PREDICTION AND SCIENTIFIC BACKGROUND:

For this investigation, I predict that as the mass of the vehicle increases, so will the stopping distances of it. This is because the trolley will become heavier, and so stronger forces will be needed to bring it to a halt. The equation for kinetic energy is:  

k.e = 1/2mass x velocity2

According to this equation, and previous experiments, if you double the mass of a vehicle, its kinetic energy should, technically, double as well. That is why that I predict that as the mass increases, so will the stopping distances. My final prediction is that the longest stopping distances will occur when there are 3 trolleys altogether, and when 4 extra 1kg weight have been added to the trolley.

For the third experiment, where I vary the starting distances, I think that the stopping distance will decrease as the starting distance does. This is because the vehicle will have less distance to cover before it hits the break, and so will not have gained as much speed as it would had the starting distance been longer.

...read more.

Conclusion

In my original prediction, I said that as the mass and starting distance of the trolley increased, so would it’s stopping distance. Overall, my results do support and agree with this, proving my prediction right. However, I had said that the longest stopping distance would occur when the starting distance was 14cm, and this was wrong as it occurred at 11 and 12cm. I also said that the longest stopping distance would be when there were 3 trolleys on top of each other, and this part was right, as it was the longest as 214cm.

EVALUATING EVIDENCE:

My results from these three investigations were not completely accurate, as I have said before. There were some anomalous results, some of which can be accounted for by the fact that the weight added to the trolley was not evenly distributed. However, although the results are not completely accurate, they are reliable enough to support a firm conclusion

IMPROVEMENTS ON FURTHER WORK:

I could improve on the accuracy of this investigation in a few ways. For example, I could extend the range of measurements that I made, maybe going down from 40cm instead of just 14cm. Also, more accurate measuring equipment could have been used, so that the times and stopping distances were as close as they could be to being 100% accurate. All of these things would give me a wider and more accurate range of results.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Fields & Forces section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Fields & Forces essays

  1. Peer reviewed

    paper cones investigation

    5 star(s)

    20cm, h = 5cm, d = 2m would be best as it has the largest time to fall and hence the smallest percentage uncertainty in the measurement of its time. However it required the construction of a paper cone from two pieces of A4 so the w = 10cm, h =5cm, d = 2m was chosen as a simpler alternative.

  2. Peer reviewed

    Investigating the forces acting on a trolley on a ramp

    5 star(s)

    In order to successfully calculate the acceleration, it is important to have a good understanding of all the forces acting on the trolley at any one point. This is better displayed as a force diagram (fig. 2) Figure 2 - Diagram to show the forces acting on an object on

  1. Investigating the relationship of projectile range and projectile motion using a ski jump.

    This can also help to keep the initial velocity leaving the ramp the same for each trial. Strong tapes and sticky blue-tac can be used to keep the end of the ramp in position and to maintain at horizontal level. This helps to provide uniform acceleration for the vertical component.

  2. A careful quantitative study of the relationship between the velocity of a trolley down ...

    The light gates were positioned to be 40cm apart, at points A and B and tested to check that they worked. 5. Once everything was set up and the light gates working effectively, the height of the stack of books was altered to make the distance between points A and F 3cm to begin with.

  1. Charge To Mass Ratio For An Electron

    is set to 400 volts the data would be I r B 1/B^2 R R^2 slope error 1.49 0.151 0.00115344569 751632.755 0.055 0.003025 248473638.1 1.98779E+11 8.19984 1.57 0.151 0.00121537566 676984.819 0.0525 0.002756 245618074.8 1.96494E+11 9.78989 1.65 0.151 0.00127730563 612929.249 0.05 0.0025 245171699.5 1.96137E+11 9.69554 1.74 0.151 0.00134697685 551162.597 0.0475 0.002256

  2. Practice A2 Investigation: Measuring the torsion of wire

    The measurement of the thickness of the wire can be adjudged as being accurate to 3 significant figures as I used a digital micrometer which gave the thickness to 4 significant figures but may have been slightly inaccurate at

  1. Force of friction

    2. The relationship between the friction and the normal reaction R From the graphs of the static friction and kinetic friction against the normal force R, it was known that both limiting friction and kinetic friction were directly proportional to the normal reaction.

  2. In this experiment, we investigated the relationship between the difference in work and mechanical ...

    There is a reason why belongings get heavier. Our experiment used ramp which is a slope that joins two parts when one is higher than the other (Ostdiek, 2005). For this experiment, work is force times the distance through which it acts (Mifflin, 2009).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work