• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aim for this experiment is to find how a thermistor works and how temperature affects the resistance of current in the circuit.

Extracts from this document...

Introduction

Thermistors have many different uses, they can be used to protect the filaments of a projector lamp and T.V. tubes from current surges as they are switched on, they can also be used for fire and frost alarms.

Resistance shows how much current is flowing through, and how fast the current flow is. The greater the resistance, the more potential difference is needed to push a current through a wire. The resistance can be calculated by:

Resistance (R) =  Potential difference across the wire (V)

                   Current through the wire (I)

There can be many factors, which affects the resistance, some variables, which can affect my results, are:

Temperature- this can affect the resistance of the thermistor; it lowers the resistance and so allows more electrons to pass through.

Length and thickness of wire- increasing the length of wire will increase the resistance, as there will be a longer distance for the current to travel. The thicker the wire, the lower the resistance, this is because there would be more space for the electrons to pass through. To control this, will use the same wires each time I do the experiment.

...read more.

Middle

Apparatus:

-For this experiment, the equipment I need are:

-Ammeter – to calculate the current

-Voltmeter – to calculate the potential difference.

-Wire

-Battery/power pack

-Switch

-Thermistor

-Thermometer – this will be place in water with the thermistor.

...read more.

Conclusion

I will use the same length and thickness of wire; I can do this by using the same wires each time. Having different lengths and thickness of wire can speed up or slow down the speed at which the current flows. The longer the length the slower the speed, the thicker the wire the faster the speed of current.

I will start recording the ammeter and voltmeter after 10 seconds, because it may take time for the voltage to charge up.

I will wait between each repetition, for it to cool down.

And also I will take accurate readings, as this would ensure that I get reliable results. I should start reading when the ammeter and voltmeter are steady.  

The one variable I will change is temperature, which I am experimenting for, by doing this I can find out how temperature affects the resistance of the current in the circuit.

I must repeat the experiment five times, so that I can achieve a good set of results.

Safety points:

  • As I am not working with dangerous chemicals, safety glass is not required.
  • Don’t put the voltage too high.
  • Don’t touch wire while switch is on.
  • Turn power off while not doing the experiment.

OSMAN AHMADI        SCIENCE COURSEWORK        THERMISTORS

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    In insulators the gap between the conduction band and the valence band is extremely large and almost no amount of energy given to the electrons will be enough for them to jump to the conduction band. This means that electricity cannot pass through these substances and explains why they do not conduct electricity.

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    From this the e.m.f and internal resistance could be calculated where E was the y-intercept and -r being the gradient of the graph when voltage is plotted against current. The I is the selected current value on the x axis and this same value was used fir for each circuit calculation.

  1. Investigate the relationship between temperature and resistance in a thermistor.

    Therefore the gradient is greatest at about 300C when there are lots of electrons to be freed and the gradient is smaller at about 1000C when the electrons have been freed. Evaluation I thought the theory behind the experiment quite complex as it involved two competing effects but I found the experiment itself quite straight forward and easy.

  2. Assess how changing the electric current in the electrolysis of acidified water affects the ...

    line of best fit did not pass through them) were close to the best-fit line and were basically within the trend. They did not affect the accuracy of the conclusions, as they were not anomalous enough to make the best-fit line a curve as opposed to the straight line that is was found to be.

  1. resistivity if a nichrome wire

    Impurities: they might have been impurities within the wire that affected my results and reduced the reliability. To reduce this in future, I would use a different wire samples. The main huge source of error is the calculation of the cross sectional area of the wire.

  2. Experiments with a thermistor

    But why do the voltage values decrease? Let's just presume that when the thermistor is subjected to room temperature, the voltage reading on the multi-meter is 2.5V, and the resistance of the resistor and thermistor is 100 ohms each. When the thermistor is subjected to a change in temperature the following occurs:- Decrease in R (Increase in T)

  1. To investigate how the temperature affects the resistance of a thermistor.

    the conduction band is by gaining enough energy to jump the gap. In metals the forbidden gap between the bands is extremely small and so it takes an extremely small amount of energy for the electrons to jump the gap as so electricity can flow very easily through all metals - this is why they conduct so well.

  2. Investigating the effect of 'length' on the resistance of a wire

    * Crocodile clips. * Connecting Wires. * A voltmeter. * An ammeter. * A wooden plank slightly longer than 1 metre. * One metre ruler. * A constantan wire which has a length of at least 1.15m and a diameter of 0.11mm. * Two screws. * Two nails. * A micrometer.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work