• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17

The aim of this experiment is to measure how the resistance change as the factors change

Extracts from this document...

Introduction

Factors which effect the resistance of a wire

Planning

Aim:

The aim of this experiment is to measure how the resistance change as the factors change. There are so many variables—temperature of surroundings, length, thickness, material, temperature of the wire, surface area, magnetic properties, coated or not and purity—that can be chosen to measure in this experiment. But in this experiment I am only going to measure two of them, which are length and thickness because these two are the easiest to measure and show the effects on the resistance.

Prediction:

The result should be showing that the resistance increase as the length or thickness increase. This happens because when length or thickness increases, the current will decrease. As the voltage won’t change, if the current decreases, then the resistance will increase.

Method:

In the experiment I will need to use apparatus listed below.

  • Copper wires with different length
  • Copper wires with different thickness
  • Connection wires
  • Voltmeter
  • Ammeter
  • Electricity supply or battery
  • Variable resistor
...read more.

Middle

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.17

0.02

0.34

0.03

0.48

0.04

0.54

0.05

0.66

36 SWG(0.20 mm), 5 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.27

0.02

0.47

0.03

0.72

0.04

1.00

0.05

1.14

36 SWG(0.20 mm), 1 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.40

0.02

0.66

0.03

0.90

0.04

1.30

0.05

1.78

20 SWG(0.90 mm), 20 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.17

0.02

0.20

0.03

0.23

0.04

0.30

0.05

0.39

20 SWG(0.90 mm), 15 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.34

0.02

0.70

0.03

1.03

0.04

1.30

0.05

1.57

20 SWG(0.90 mm), 10 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.35

0.02

0.58

0.03

0.77

0.04

1.00

0.05

1.15

20 SWG(0.90 mm), 5 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

1.17

0.02

1.79

0.03

2.92

0.04

3.50

0.05

3.60

20 SWG(0.90 mm), 1 cm

Voltage, V/Volts, V

Current, I/Amps, A

0.01

0.85

0.02

1.27

0.03

2.08

0.04

2.80

0.05

3.27

26 SWG(0.

...read more.

Conclusion

Evaluating

Although the whole experiment has been going very well, but the results seems to show some bias or errors as in one or two of the graphs, the pattern is quite strange because some of the gradient (resistance) is not proportional to the lengths. Overall, the experiment can be said as a success.

Michael Li

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigating how temperature affects the resistance in a wire

    -A power supply (used to supply the kettle with electricity so that it could heat the water needed for the water bath. -A -10?C to +110?C thermometer (used to monitor the temperature of the water bath) -One of these This is basically a stick with wire highly coiled around it,

  2. Investigating the effect of 'length' on the resistance of a wire

    * Metals conduct much better than non-metals. Copper is the best conductor. So the resistance of a uniform conductor is 1. proportional to its length, 2. Inversely proportional to its area of cross-section. In other words, its resistance = constant (resistivity)

  1. Find The Internal Resistance Of A Power Supply

    The lost volts show the voltage drop across the power supply at the minimum load resistance setting and have been calculated by taking away the minimum potential difference from the EMF value at the five different voltage settings. EMF (volts) Internal Resistance (ohms) Average Internal Resistance (ohms) Lost Volts (volts)

  2. To find which of the circuits, shown below, are most suitable to measure a ...

    At the start the resistance I specified on the variable resistor was 50000?. The reading above that I calculated from the theoretical work is 25000? off this value. 25000? expressed as a percentage of the original 50000? is 50%. This is a vast reading off the labelled resistance, so I

  1. Investigating the factors affecting the size of current flowing through a length of resistivity ...

    / cm2 Current/A Current if A=1cm2 23 2 0.064 0.032 11.7 4 0.26 0.065 11.7 1 0.064 0.064 7.2 6.1544 0.6 0.0975 As you can see from the fourth column (in bold), doubling the length of the putty from 11.7cm to 23cm (in italics)

  2. Investigating the factors that affect the conductance of a solution

    In sulphuric acid there are 2H+ ions where there is only one Na+. So more positively charged ions the better the conductance will be. Hypothesis: What effect does different electrodes (Carbon & Copper) have on the conductance rate of a solution?

  1. How different factors affect the resistance of a wire

    using an ammeter and the voltage (volts / V) using a voltmeter. To carry out a fair test, other variables that could be controlled include: * The thickness of the wire (SWG 32) * Voltage setting on the power pack (5V)

  2. An experiment to investigate how the resistance between two copper plates immersed in copper ...

    Preliminary results Depth of Copper Sulphate (cm) Surface area of copper plate submerged (cm2) Potential Difference (volts) Current (amps) Resistance (ohms) 1/Surface area (cm2) 0 0 6.85 0 1 2 6.11 0.11 55.55 0.50 2 4 5.92 0.18 32.89 0.25 3 6 5.73 0.26 22.04 0.17 4 8 5.50 0.36

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work