The Commercial Use of Enzymes.

Authors Avatar

Page  of

The Commercial Use of Enzymes

Throughout this project I will be looking at the use of enzymes in industry. I will focus my thoughts onto the medical area and furthermore onto the portable medical devices. This will include looking at biosensors in great detail along with medical test strips.

Enzymes are chemical catalysts; this means that they increase the rate of chemical reactions without being consumed in the process. The exact nature of how enzymes work is not know. The majority of the reactions that occur in living organisms are enzyme controlled and without them, the reactions that are necessary for the organisms to function would be reduced to a rate too slow as to cause serious/fatal damage. Without enzymes, toxins would rapidly build up in the organism and the supply of respiratory substrate would fall. Most enzymes are proteins which themselves are polymers of amino acids (A few rib nucleoprotein enzymes have been discovered and, for some of these, the catalytic activity is in the RNA part rather than the protein part). This means that they have a specific shape. Therefore an enzyme is specific in the reactions that they catalyse (one enzyme will only react with one molecule of a substrate). The site on the surface of the enzyme where the reactions take place is known as the active site. The active site for all the molecules of one enzyme is made up of the same arrangement of amino acids and therefore makes the active site a highly specific form.

There are two theories on how the substrate binds to the enzyme to react:

The Lock and Key Theory – This theory was first put forward in 1894 by Emil Fisher who described the specific action of an enzyme with a single substrate as being the same as how a lock and key works. As like a lock and key, only the specific substrate fits into the active site of the enzyme. Substrates without the correct qualities/features will not be able to bind with the active site on the enzyme. This theory is represented in the diagram below.

Induced Fit Theory – This came about as a modification to the previous theory due to the fact that some experimental evidence could not be explained by the lock and key theory.

This theory assumes that the enzyme is partially flexible and the substrate plays a role in determining the final shape of the enzyme. In other words the substrate induces the active site to change shape. This explains why certain compounds can bind with the enzyme but reactions don’t occur as the enzyme has been deformed too much. Other molecules may be too small as to induce the proper alignment and therefore no reactions can occur. Only the correct substrate can bring on the correct shape of the active site. This theory is represented in the diagram below.

Join now!

The lack of specific enzymes can cause various disorders. These include albinism, diabetes, and cystic fibrous. All three are traceable to either a lack of a specific enzyme or an imbalance of one.

An example of a place that is thriving with enzymes is the human digestive tract and the saliva. The saliva contains salivary amylase, an enzyme that breaks down starch to glucose. While the stomach combines the enzyme pepsin with dilute hydrochloric acid to speed the digestion of proteins. Enzymes are carried to the intestines to smooth the progress of the digestion of fats. ...

This is a preview of the whole essay