• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

The effect of enzyme concentrations on the reaction time of Urease active meal.

Extracts from this document...

Introduction

Title: The effect of enzyme concentrations on the reaction time of Urease active meal. Aim: My aim of this investigation is to investigate the effect of enzyme Urease concentrations on reaction time. Urease is the enzyme used to breakdown urea into carbon dioxide and ammonia. I have chosen to carry out this investigation because there are many different areas of biology linked with this investigation that are of interest to me. In addition, enzymes are one of the most important and fascinating molecules found in the body and I would enjoy learning more about the fascinating compound for my own pleasure. Introduction: Enzymes are biological organic catalysts. They are specialised globular proteins with a complete tertiary structure that give it the property of being specific for one biochemical reaction that takes place inside every living cell. Many reactions that take place inside living organisms are very slow without the presence of an enzyme. Enzymes act as biological catalysts that allow reactions to take place rapidly in conditions that are found inside living cells without being chemically used up or changed themselves. Each different type of enzyme has a unique three-dimensional structure that enables the enzyme to catalyse one type of reaction. They may affect one particular biochemical reaction strongly but leave a similar reaction unaffected. In an enzyme catalysed reaction, the reactance, also known as the substrate, binds to the enzyme at specific points known as the active site to form an enzyme-substrate complex. The precise shape of the acitive site is important inorder for the substrate to combine to the enzyme as the substrate is the complementary shape to the active site. The diagram below represents this: The overall three - dimensional shape of a polypeptide chain is referred to as the enzymes tertiary structure. In globular proteins, the polypeptide chains are tightly folded to form a spherical shape. Many globular proteins are folded so that their hydrophobic groups are on the inside of the molecule and the hydrophilic groups face outwards, making these proteins suitable in water. ...read more.

Middle

- to contain standard solutions accurately * 200cm3 volumetric flask &stopper (x2) - to contain standard solutions accurately * 1000cm3 volumetric flask &stopper (x1) - to contain standard solutions accurately * Funnel - for accurate manipulation of solutions * Test tubes ( 8 x 12) - reaction vessel * Test tube rack - to hold test tubes * Labels - to avoid any confusion with solution and prevent anomalies in my results * Syringe (x4) - to measure and transfer small amounts of solutions accurately * Stop clock - to measure the time Chemicals: * Distilled water and wash bottle - to rinse out impurities and dilute solutions * 3% Urease solution - source of enzyme * 2% urea solution - source of substrate * pH5 buffer solution - to maintain pH of solution * pH7 buffer solution - to maintain pH of solution * pH7.5 buffer solution - - to maintain pH of solution * Phenolphthalein indicator - to indicate end point of the reaction * Bromothymol Blue indicator - to indicate end point of the reaction Risk assessment Below is a list of all the chemicals I will be using for my experiment and the risks involved with them: * Urea - toxic * Ammonia - highly toxic * pH5 solution - weak alkali * pH7 buffer solution - * pH7.5 buffer solution - * Urease enzyme - * Phenolphthalein indicator - irritant to eyes, skin and respiratory system. * Bromothymol Blue indicator - Safety Extreme care must be taken when handling all the chemicals mentioned above, as they can be hazardous not only to myself but to other people around me. To ensure the safety and minimise risk from the nature of the hazards exposed to others, and myself I will: * Make sure that protective clothing i.e. safety glasses; lab coat and protective gloves are worn throughout the experiment. * Keep hazardous chemicals away from naked flames, as the chemicals I am using are flammable. ...read more.

Conclusion

in minutes, of enzyme concentration using Bromothymol blue indicator Experiment 2 - using Bromothymol blue Test tube number Rough 1 2 3 4 5 6 7 8 9 10 11 12 1 11.33 11.31 1.32 12.06 11.52 11.42 11.43 11.42 11.24 11.53 11.37 11.48 11.36 2 7.06 6.29 6.52 6.23 6.42 6.27 6.16 6.14 6.26 6.34 6.25 6.32 6.46 3 4.32 4.50 4.53 4.53 4.42 4.29 4.38 4.41 4.42 4.16 4.35 4.59 4.51 4 2.43 2.53 2.44 2.39 2.46 3.05 2.43 2.46 2.47 2.58 3.03 3.01 2.58 5 2.15 2.25 2.23 2.22 2.18 2.17 2.19 2.20 2.21 2.23 2.19 2.16 2.21 6 2.08 2.03 1.56 1.53 2.03 1.41 1.56 2.03 2.04 1.52 1.49 2.05 2.06 7 1.23 1.16 1.13 1.14 1.10 1.21 1.15 1.20 1.17 1.18 1.09 1.22 1.23 8 1.02 10.53 0.54 0.49 1.03 1.06 0.48 0.46 0.57 0.53 0.47 0.51 0.55 Analysis Below is a table showing the reaction time converted into seconds. Experiment 1: phenolphthalein Test tube number Rough 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 Experiment 2 - using Bromothymol blue Test tube number Rough 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 Below is a table showing the average of my results in seconds, the reaction time in seconds, and the weighted reaction time. Average = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 12 weighted reaction time = average reaction time (secs) X conversion factor Experiment 1: phenolphthalein Test tube number Reaction time (secs) Conversion factor Weighted reaction time (secs) 1 0.0667 2 0.1333 3 0.2000 4 0.2667 5 0.4000 6 0.5333 7 0.6667 8 1.0000 Experiment 2: Bromothymol blue Test tube number Reaction time (secs) Conversion factor Weighted reaction time (secs) 1 0.0667 2 0.1333 3 0.2000 4 0.2667 5 0.4000 6 0.5333 7 0.6667 8 1.0000 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    How does the concentration of enzymes affect the breakdown of starch by a-amylase in ...

    4 star(s)

    10 37.5 8 35.7 6 33.8 4 35.0 * 2 30.4 0 0 .0 Experiment 3 10 37.8 8 36.1 6 34.5 4 31.3 2 30.1 0 0.0 Experiment 4 10 39.2 8 37.5 6 35.9 4 34.8 2 32.3 0 0.0 Average of all results (excluding anomalous results)

  2. Marked by a teacher

    An investigation into the inhibiting effect of tomato juice on the germination of cress ...

    3 star(s)

    tomato juice, which have a negative effect on the germination of cress seeds. Conclusion My results unmistakably show that as the concentration of the tomato juice increases the percentage of germination decreases. For instance the mean number of seeds germinated at 0% concentration of tomato juice was 39 (98%), this fell to a mere 3 seeds (8%)

  1. Investigation of the effect of adding different concentrations of NaCl to an enzyme-substrate (amylase-starch) ...

    take place and therefore speed up the overall rate of reaction without changing the temperature at which the reaction occurs. Enzymes are biological catalysts, with the ability to increase the rate of reaction by a factor of at least a million.

  2. Investigating the Effect of pH on Enzymes

    I believe this as the amylase that we are using is from a bacillus. Bacilli are found in a wide range of places but are most commonly found in soils, and so generally work in neutral condition, i.e. pH 7.

  1. Catalyse Investigation

    To control the substrate concentration, identical quantities of the substrate were used for each reading. Each measurement of substrate were taken form the same source and concentration (10%). To ensure that the quantity of substrate was measured precisely, a measuring cylinder was used to accurately gauge the exact quantities. iv)

  2. Investigating the effect of pH on the activity of an enzyme.

    3cm� of this solution will be used, this measurement is not to large it is the appropriate amount to for a good reaction to occur. ==> Exposed photographic film: this is the substrate which will bind to the enzymes active site for reaction to occur the same amount of 2cm�

  1. An Investigation Into the Effect of Substrate Concentration On the Rate of Enzyme Activity.

    These test tubes will then be placed into a heat block at a temperature of 20oC, this will be done to keep the temperature constant. The test tubes containing the hydrogen peroxide will be left in the heat block for five minutes; this will allow the hydrogen peroxide solutions to rise to the temperature of the heat block.

  2. Trypsin. Hypothesis: - I hypothesize that as the temperature increases the rate of enzyme ...

    Antioxidant enzymes like Catalase and superoxide dismutase are located in the periplasmic space, which is the space between the inner and outer membranes of the cell wall. There are numerous enzymes located here that would be toxic if they were found inside the cell.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work