The effect of temperature on the hydrolysis of starch using amylase extracted from barley.

Authors Avatar

Sasha Caddy, RM11.                                                                        20/01/04

The effect of temperature on the hydrolysis of starch using amylase extracted from barley

Interpretation of results:

        Enzymes are a class of proteins that catalyse chemical reactions, which increases the rate of a metabolic reaction. Most enzymes are specific, working on a particular or class of reactions. In this case I am using an enzyme known as amylase (a group of enzymes which convert starch to sugar), which is an important metabolic enzyme. Amylase is found in various parts of the body including the saliva of the parotid gland and the pancreas, e.g. ptyalin, which aids in the digestion of carbohydrates by speeding up specific digestive processes taking place from the mouth to the small intestines. However, in this experiment we are using amylase which has been extracted from barley. The function of amylase is to catalyze (to modify the rate of a chemical reaction by catalysis) the hydrolysis (decomposition of a chemical compound by reaction with water) of starch into glucose. Starch is a mixture of two compounds; amylose and amylopectin, both of these molecules are polymers which contain a large, variable number of a-glucose molecules linked to each other by condensation. Amylase acts on starch, which is a polysaccharide (a class of carbohydrates; starch, consisting of a number of twenty-five monosaccharides) and breaks it down into maltose, a disaccharide. A disaccharide is defined as any class of carbohydrates; maltose, that yield two monosaccharides upon hydrolysis. The disaccharide sugars; maltose, lactose, and sucrose, have the empirical formula C12H22O11. When treated with enzymes, the disaccharides combine with one molecule of water and split into two molecules of monosaccharide hexose sugars, e.g. maltose splits into two molecules of glucose when treated.

        In order for amylase to continue working at its best, the body needs to keep within several degrees of 37 C (an optimum temperature for most enzymes), as enzymes must work in mild conditions of a cell in the body. Chemicals which are changed by enzyme-catalysed reactions are known as the substrates of that enzyme, which fit into the active site (where the reaction takes place) of the enzyme, in a lock-and-key mechanism. The products of the reaction then leave the active site, which frees it up for more similar reactions to take place. If our body heat exceeds further past 37 C our cells become impaired or permanently damaged, this damage is irreversible to the molecular structure of the enzymes due to the velocity with which the atoms move about. This is because the structure of the an enzyme vibrates so much that some of the bonds holding the tertiary structure together break (especially hydrogen bonds as they are weak). So now the enzyme starts to lose its globular shape, because of this the substrate will no longer be able to fit into its active site. In other words when the enzymes become denatured, there is a major change from the native state to another state without the changing of the primary structure, this usually leaves the enzyme without its catalytic functions. At a temperature of approximately 100 C amylase becomes denatured. Whereas, if our body heat was to descend below 37 C the metabolism decreases without permanent damage until ice crystals form in the cells. Meaning the enzymes are inactivated, not denatured (even at extreme low temperatures, such as 0 C) and once the temperatures increase, they will regain their function.

Join now!

        From the first graph which shows the percentage transmission from the colorimeter (a device which provides an indication of how deep a colour is, and could measure the index of concentration of the samples) at minute intervals at different temperatures; 15 C, 25 C and 35 C, there is a trend and pattern. This trend and pattern is that the lower the percentage of transmission from the colorimeter, the less light getting through, this means that there is a high concentration of starch (mg). Although, as time increases more and more of the substrate (starch) is being broken down into ...

This is a preview of the whole essay

Here's what a teacher thought of this essay

Avatar

**** This account includes detailed background theory and good discussion and evaluation sections. However, in places biological terminology might have been used more carefully.