• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# The effect of temperature on the resistance of a thermistor

Extracts from this document...

Introduction

Jon Quere

Physics Coursework

The effect of temperature on the resistance of a thermistor

Aim: The aim of this experiment is to find out whether temperature affects the resistance of a thermistor.

Variables:

• The temperature.
• Type of ammeter.

I will be investigating whether or not a change in temperature of water to find out whether or not it will affect the resistance of a thermistor.

I will be keeping the following variable the same:

• The power supply.

I will be taking readings of the temperature, volts, amps and resistance. I will be using a digital voltmeter, ammeter and thermometer for more accurate results. I will also be repeating the experiment at least twice and getting an average. I will be measuring and recording my results in amps, volts, resistance and degrees Celsius.

Apparatus:

Stand

Ammeter

Bunsen burner

Voltmeter

Thermistor

Thermometer

Beaker

Tripod

Power pack

Electric leads

Diagrams:

## This diagram shows the electrical circuit involved:              This diagram shows the apparatus set up:

Definitions:

Current- This is a measure of the flow of electrons around a circuit (measured in Amperes or Amps (A))

Voltage-

...read more.

Middle

I predict that the graph will look something like this: Explanation of prediction:

In my prediction I have stated that a change in temperature will affect the resistance of the thermistor.

In general an increase in temperature increases the resistance of metal but decreases the resistance of semiconductors. The resistance of most thermistors decrease as their temperature rises. In my case the resistance theoretically will in fact decrease as I raise the temperature.

The electrons in the heat energy produce resistance in the electrical circuits. We can measure ho w many electrons have effected the thermistor by measuring the current and the voltage. Scientific theory

The current and voltage of an electric circuit, is given by the formula V=IR. This is known as Ohms. Ohm´s Law is only applicable, when the temperature of the resistor is kept constant. Therefore Ohms law is only applicable to Ohmic conductors. Examples of Ohmic conductors are metals and alloys at constant temperatures. Anything that doesn’t obey Ohms law, are know as non-Ohmic Conductors.

...read more.

Conclusion

My prediction says that the resistance will decrease with an increase of temperature I can now verify that with the help of my results and graph.

Evaluation:

In all I think my experiment was very successful.  I did not run into any difficulties except for one minor problem. This problem was not picked up in my preliminary experiment but was a factor that affected my main experiment. This problem was that the volt meter was dysfunctional at the temperature of 80 degrees or above.  The results I obtained were all of a good quality.  I believe they are of good quality as I had just one result that showed up to be out of place.  All of the other readings again correspond to my prediction and analysis.  The one odd result was probably due to an inaccurate reading of the ammeter or the voltmeter.  Although I feel that my experiment was successful if I were to do it again I would change one or two things. One of these things would be repeating the experiment at least five times and finding averages.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Electrical & Thermal Physics essays

1. ## Investigate how the temperature affects the resistance of a thermistor.

more energy is going into the valence band. This energy allows electrons to jump the gap and flow along the conduction band. The higher the potential difference the hotter the component will get and the more electrons that will jump into the conduction band. This is why when a thermistor is heated the resistance decreases.

2. ## Thermistor Coursework

2.29 27 2.27 28 2.25 29 2.21 30 2.10 31 2.07 32 2.01 This graph shows me what potential difference the potential divider will give out when the temperature output is 20°C and 30°C, information that could be used to calibrate a circuit that can open and close the windows, and turn the heaters on inside the greenhouse.

1. ## Experiments with a thermistor

A cardboard 'wall' can be excluded in this case. * The change in output was not largely significant, with a rise of only around 0.01-0.08 V for each reading taken, and I was only able to obtain distance values for up to 16cm.

2. ## Characteristics of Ohmic and Non-Ohmic Conductors.

Filament lamp - as more current flows through the metal filament, its temperature increases. The increase in temperature causes an excess amount of vibrations between the atoms, and this constant vibration obstructs the flow of electrons, thus decreasing the current, and increasing the resistance.

1. ## Investigate the relationship between temperature and resistance in a thermistor.

0.23 11.46 11.42 11.52 49.83 49.65 50.09 49.86 100 0.25 0.24 0.25 11.42 11.42 11.50 45.68 47.58 46.00 46.42 Analysis From my graph I can clearly see that as the temperature increases the resistance decreases. This is because as the thermistor increases in temperature the lattice atoms move faster and

2. ## Investigating a Thermistor.

are sufficient to conclude that there is little difference between the 560ohm and the 27k ohm fixed resistors. Although my algebra suggested that the 27ohm resistor would perform most sensitively (measured by the gradients), I found it to perform consistently (shown by the fairly steady slope), but by no means was it most sensitive.

1. ## Investigation into how the resistance of a thermistor varies with temperature.

Revision book page 60, and in a physics textbook called Complete Physics by Stephen Pople. Both books state that the way to calculate the resistance is to use the following formula triangle and substitute in my specific calculations: Thermistor In the Letts' "Double Award Science Physics Higher" GCSE Revision guide

2. ## Investigating how temperature affects the resistance in a wire

A 5% value is used in the x-axis error bars because it incorporates the notion that the inaccuracy goes up with a rise in temperature. Making the x-axis error bars bigger at higher temperatures and smaller at lower temperatures. There is also the possibility of inaccuracy among the ohms readings, • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work 