• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The electron microscope is an intense microscope. It can see things that a normal microscope cannot.

Extracts from this document...

Introduction

Lynsey Mansfield                                                26th September 2002

Electron Microscopy

The electron microscope is an intense microscope. It can see things that a normal microscope cannot. The electron microscope cannot be used to look at living cells. Increasing the magnification in electron microscopy results in an increase in the amount of visible detail. There is a vacuum inside an electron microscope. Photographs of specimens viewed with an electron microscope are called electronmicrographs.

The electron microscope uses electromagnets to focus the image onto a fluorescent screen. Light areas on an electronmicrograph are produced when electrons have been able to pass through the specimen.

...read more.

Middle

The resolving power of a transmission electron microscope depends on the wavelength of the electromagnetic radiation used. The transmission electron microscope allows us to see as separate structures, particles that are as close together as two nanometres. The microscope also produces sharp definition at low magnification and can also be used at high magnification. The resolution of the microscope is two nanometres. An image is formed from electron emitted or reflected from the surface of a complete specimen.

The scanning electron microscope gives a three-dimensional effect showing surface detail. It scans electron beams to and fro across the surface of a complete specimen. This microscope can take larger specimens than the transmission electron microscope can.

...read more.

Conclusion

The freeze fracture technique prepares the specimen ready to be analysed. The embedded tissue is cut into very thin sections using a knife made of glass. The tissue is embedded in a resin, which becomes hard. It is preserved using substances, which prevent enzyme action. Using liquid nitrogen freezes the specimen. The freeze fracture technique allows surface detail to be seen with a transmission electron microscope.

There are however some disadvantages, for example the treatment may introduce artefacts. Or a high-intensity electron beam can destroy parts of the specimen, producing light-coloured areas on the screen.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Microscopes & Lenses section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Microscopes & Lenses essays

  1. Peer reviewed

    What Are the Advantages and Disadvantages of A Light And Electron Microscope?

    3 star(s)

    As well as those factors it is very expensive and is in mono colours: black and white. Adding to that, movement of the species cannot be observed by the scientists; the samples have to be dead to be put through the electron microscope.

  2. Peer reviewed

    Comparing the Light and Electron Microscope

    3 star(s)

    So in 1933 the Electron microscope was developed. The electron microscope works on the same principles as the light microscope but instead of light rays, with their wavelengths in the order of 500nm, a beam of electrons of wavelengths 0.005nm is used.

  1. Peer reviewed

    The history, development and use of the light and electron microscope

    3 star(s)

    For light microscopy this problem can be overcome by using dyes which colour the transparent organells to help us view the specimen. Some of these dyes such as methylene blue can be used on living cells without damaging them. The final image will magnify detail which cannot be seen with

  2. Peer reviewed

    Microscopy. History of the microscope:-

    3 star(s)

    Electron scattering Medium Air Air Air Vacuum Vacuum Simple light microscopes of the past could magnify an object to 266X. Modern compound light microscopes, under optimal conditions, can magnify an object from 1000X to 2000X (times) the specimen's original diameter.

  1. The use of the electron microscope has advanced our understanding of cell biology further ...

    It was developed by Max Knoll and Ernst Ruska in Germany in 1931. Next came the Scanning Electron Microscope (SEM) in 1942, with the first commercial instruments becoming available around 1965. Its late development was due to the electronics involved in "scanning" the beam of electrons across the sample.

  2. What is an atomic orbital?

    A p orbital is rather like 2 identical balloons tied together at the nucleus. The diagram on the right is a cross-section through that 3-dimensional region of space. Once again, the orbital shows where there is a 95% chance of finding a particular electron.

  1. Bradford Museum of Film and Photography

    The light in a fibre optic is constantly travelling through the core by a principle called total internal reflection (TIR). This means that the angle the light hits the walls of the optical fibre has to be more than the critical angle of the material.

  2. A brief history of how the light microscope has developed since the 17th Century ...

    in the early 1930's, which led to the development of the electron microscope. Ruska had shown in his PhD theory the potential for electrons to be used in a microscope. Backed initially by Max Knoll, he put theory into practice and constructed the first electron microscope in 1933.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work