• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The factors affecting the current flow through a conductor at a constant temperature.

Extracts from this document...

Introduction

Brief

I need to investigate the factors affecting the current flow through a conductor at a constant temperature.

Introduction

Resistance is a force found in currents that opposes the flow of electrons around a circuit. When this occurs energy is needed to push the charged particles around the circuit. The circuit itself can resist the flow of particles if the wires are either very thin or very long. E.g. the filament across an electric bulb is quite thin as needs to resist the flow of particles for the bulb to glow. Resistance is measured in Ohm’s because George Ohm discovered it.

Plan

As I need to investigate the factors affecting current in a circuit I need to vary something connected to current. The ideal choice is Ohm’s law (resistance = voltage/Current) because voltage and resistance are easily changed to vary the current. Ohm’s law is sometimes written like this:

image00.png

V = Voltage

C = Current

R = Resistance

Current is the flow of electrons in a circuit. This is what an ammeter measures. There are 2 types of ammeter, digital and analogue. Digital readers are easier to read because the current is displayed as a number.

...read more.

Middle

Reliability

I know that the results will be accurate because having a second experiment will check them. Any anomalous readings will hopefully be averaged out and will not have a significant impact on the final result.

Measurements

The measurements will be recorded in ohm’s, volts, and amp’s and also in degrees.

Proposed Range

I will hopefully get a range of 0-1 amps during the experiment.

Hypothesis

I predict that when the resistance in the circuit increases the current and the voltage will decrease, according to Ohm’s law (resistance = voltage/Current).

As the resistance increases there will be more ‘hurdles’ for the electrons to conquer as they travel around the circuit, and this is why the voltage and current will decrease. As long as the temperature remains constant this hypothesis will be accurate. The resistance will be proportional to the current.

Obtaining Evidence

...read more.

Conclusion

If I had the chance to conduct an experiment like this again I would change the voltage as well whilst keeping the resistance and current the same to prove Ohm’s law correct. I would then be able to cross-reference the results and make a full investigation of the brief. The method for the next experiment is shown below.

  1. Set up the circuit as shown in the original circuit diagram.
  2.  Prepare a results table to record the data from the circuit. It should include voltage and resistance readings. The resistance will be calculated as before.
  3. Instead of a variable resistor it may be a prudent decision to use a fixed resistor. The results will be taken more accurately and will keep it a fair test.
  4. Repeat each part of the experiment twice, to gather average readings and to filter out any mistakes.
  5. Draw a graph of the results to compare with the graph of current against voltage.
  6. Draw another conclusion and evaluate the investigation, stating how it worked and what went wrong.

I would have also liked to make the recordings with an analogue reader to test the difference in accuracy between an analogue reader and a digital reader. This would have also been an interesting investigation.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    in obtaining the data I found that the data I did obtain wasn't as accurate as it could have been and so as a result of this I had a few anomalies.

  2. Investigating the effect of 'length' on the resistance of a wire

    Improvements: Although the experiment I conducted was efficient to a certain degree, the calculations above suggest that my method needs some improvement so if I were to repeat it; I would make the following changes: * To improve the accuracy I would use pointers rather than crocodile clips.

  1. Relationship between the current and voltage.

    The 2-ohm resistor has approximately double the gradient of the 1-ohm resistor. The light bulb results produced a curved graph, as seen in fig 4. As this was the case, it dictates two things. The first is that the Ohms law is not applicable, as the temperature is not constant, and that the resistance of the bulb is not constant.

  2. silicon project

    * Medical materials - Silicones are flexible compounds containing silicon-oxygen and silicon-carbon bonds; they are widely used in applications such as artificial breast implants and contact lenses. * LCDs and solar cells - Hydrogenated amorphous silicon has shown promise in the production of low-cost, large-area electronics in applications such as LCDs.

  1. How different factors affect the resistance of a wire

    The extent for my investigation would be 10 - 20cm, 30cm, 40cm, 50cm, 60cm, 70cm, 80cm, 90cm and 100cm. I will do this in order to find a regular pattern and to do a suitable extent. I have also decided that the power pack setting will be at a constant

  2. Find The Internal Resistance Of A Power Supply

    supply and the current flowing through the circuit at each voltage setting. Each of the eight readings will be taken after increasing the load resistance slightly. A voltmeter will be connected in parallel with the power supply and the ammeter and variable resistor will be in series.

  1. Investigation into the resistance of a filament lamp.

    Zero on the Kelvin scale is considered the be absolute zero; that is, the point at which all molecular motion stops. (http://www.usatoday.com/weather/wtempcf.htm) Few ways to measure the temperature of filament lamp > You could measure the wavelength of the light emitted from the filament lamp > You could use the

  2. To investigate how increasing the voltage can affect the flow of current.

    I will start the voltage at 0V and will increase the voltage in steps of 0.5V, i.e. 0V, 0.5V, 1V etc. At each stage I will record the current alongside the corresponding voltage. I will repeat this experiment three times then will find the average of the results.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work